Answer:
How to find the maximum height of a projectile?
if α = 90°, then the formula simplifies to: hmax = h + V₀² / (2 * g) and the time of flight is the longest. ...
if α = 45°, then the equation may be written as: ...
if α = 0°, then vertical velocity is equal to 0 (Vy = 0), and that's the case of horizontal projectile motion.
Explanation:
Answer:
Option 3: -48 cm
Explanation:
We are given:
refractive index; n = 1.5
radius of curvature; r2 = 24 cm
Formula for the focal length is given as;
1/f = (n - 1) × [(1/r1) - (1/r2)]
As r1 tends to infinity, 1/r1 = 0
Thus,we now have;
1/f = (n - 1) × (-1/r2)
Plugging in the relevant values;
1/f = (1.5 - 1) × (-1/24)
1/f = -0.02083333333
f = -1/0.02083333333
f = -48 cm
Energy can be one answer! There are many, but energy is a main one.
' +4 m/s² ' means that the pigeon's speed is 4 m/s greater every second.
Starting from zero speed, after 10 seconds, its speed is
(10 x 4m/s) = 40 m/s.
We can't say anything about its velocity, because we have
no information regarding the direction of its flight.