Answer:
<em>t</em><em>h</em><em>e</em><em> </em><em>c</em><em>o</em><em>r</em><em>r</em><em>e</em><em>c</em><em>t</em><em> </em><em>a</em><em>n</em><em>s</em><em>w</em><em>e</em><em>r</em><em> </em><em>i</em><em>s</em><em> </em><em>C</em><em> </em><em>1</em><em>/</em><em>3</em><em>2</em><em> </em><em>I</em><em>b</em>
Step-by-step explanation:
hope it helps
Answer:
none
Step-by-step explanation:
We are given a triangle ABC with ∠A = 30°, sides a = 4 and b = 10.
According to the 'Law of Sines- Ambiguous Case', we have,
If a < b×sinA, then no triangle is possible.
If a = b×sinA, only one triangle is possible
If a > b×sinA, two triangles are possible.
So, we have,
b×sinA = 10 × sin30 = 10 × 0.5 = 5.
Now, as
4 = a < bsinA = 5.
We get, according to the rule, no triangle is possible.
Answer:
so its D
Step-by-step explanation:
a is wrong becuase it does have 6
b is wrong becuase you make into 6 triangles
c is wrong becuase it does add up to 180 degrees
Answer:
640 students
Step-by-step explanation:
544 divided by 85%= 640
Make a change of coordinates:


The Jacobian for this transformation is

and has a determinant of

Note that we need to use the Jacobian in the other direction; that is, we've computed

but we need the Jacobian determinant for the reverse transformation (from

to

. To do this, notice that

we need to take the reciprocal of the Jacobian above.
The integral then changes to
