The energy change if 84.0 g of CaO react with excess water is 98KJ of heat is released.
calculation
heat = number of moles x delta H
delta H = - 65.2 Kj/mol
first find the number of moles of CaO reacted
moles = mass/molar mass
the molar mass of CaO = 40 + 16= 56 g/mol
mass = 84 g
moles therefore = 84 g/56 g/mol =1.5 moles
Heat is therefore = 1.5 moles x -65.2 = - 97.8 Kj = -98 Kj
since sign is negative the energy is released
<span>A solution with a pH of 4 has ten times the concentration of H</span>⁺<span> present compared to a solution with a pH of 5.
</span>pH <span>is a numeric scale for the acidity or basicity of an aqueous solution. It is the negative of the base 10 logarithm of the molar concentration of hydrogen ions.
</span>[H⁺] = 10∧-pH.
pH = 4 → [H⁺]₁ = 10⁻⁴ M = 0,0001 M.
pH = 5 → [H⁺]₂ = 10⁻⁵ M = 0,00001 M.
[H⁺]₁ / [H⁺]₂ = 0,0001 M / 0,00001 M.
[H⁺]₁ / [H⁺]₂ = 10.
Answer:
![[SO_3]=0.25M](https://tex.z-dn.net/?f=%5BSO_3%5D%3D0.25M)
Explanation:
Hello there!
In this case, since the integrated rate law for a second-order reaction is:
![[SO_3]=\frac{[SO_3]_0}{1+kt[SO_3]_0}](https://tex.z-dn.net/?f=%5BSO_3%5D%3D%5Cfrac%7B%5BSO_3%5D_0%7D%7B1%2Bkt%5BSO_3%5D_0%7D)
Thus, we plug in the initial concentration, rate constant and elapsed time to obtain:
![[SO_3]=\frac{1.44M}{1+14.1M^{-1}s^{-1}*0.240s*1.44M}\\\\](https://tex.z-dn.net/?f=%5BSO_3%5D%3D%5Cfrac%7B1.44M%7D%7B1%2B14.1M%5E%7B-1%7Ds%5E%7B-1%7D%2A0.240s%2A1.44M%7D%5C%5C%5C%5C)
![[SO_3]=0.25M](https://tex.z-dn.net/?f=%5BSO_3%5D%3D0.25M)
Best regards!
Answer:
hiiiiiiiiiiiiiiiiiiiiiiiiii
Answer:
cornea, pupil, lens, vitreous humor