Answer:
V₂ = 0.95 L
Explanation:
Given data:
Initial temperature of gas = 171.4 K
Final temperature of gas = 288.4 K
Final volume = 1.6 L
Initial volume = ?
Solution:
The given problem will be solve through the Charles Law.
According to this law, The volume of given amount of a gas is directly proportional to its temperature at constant number of moles and pressure.
Mathematical expression:
V₁/T₁ = V₂/T₂
V₁ = Initial volume
T₁ = Initial temperature
V₂ = Final volume
T₂ = Final temperature
Now we will put the values in formula.
V₁/T₁ = V₂/T₂
V₁ = V₂T₁ /T₂
V₂ = 1.6 L × 171.4 K / 288.4 k
V₂ = 274.24 L.K / 288.4 K
V₂ = 0.95 L
Answer:
10-9 Millimeters/liters
Explanation:
Because 10-9 M Is more than 10-8 M
I hope this is correct
Solute is what gets dissovled, in this case the salt, and the solVENT is whatever a material is dissolved into, in this case the water.
Explanation:
The nitrate anion is a univalent (-1 charge) polyatomic ion composed of a single nitrogen atom ionically bound to three oxygen atoms (Symbol: NO3) for a total formula weight of 62.05. Lead Nitrate is generally immediately available in most volumes.
Answer:
Option 4. 14.8 g
Explanation:
3NO2 + H2O → 2HNO3 + NO
First let us calculate the molar mass of NO2 and NO. This is illustrated below;
Molar Mass of NO2 = 14 + (2x16) = 14 + 32 = 46g/mol
Mass of NO2 from the question = 3 x 46 = 138g.
Molar Mass of NO = 14 +16 = 30g/mol
From the equation,
138g of NO2 reacted to produce 30g of NO
Therefore, 68.2g of NO2 will react to produce = (68.2 x 30)/138 = 14.8g of NO.