A hole, and people die if they fall in there.
-- <u><em>Current is measured in amps.</em></u> (You can use any symbol you want to represent current, but the most common one is " I ", not "Δ".)
-- <u><em>The relationship between current, voltage, and resistance is mathematically defined by Ohm's Law. </em></u>
-- <u><em>Current is the flow of electrons through a circuit.</em></u>
-- (Ohm's Law is NOT mathematically represented by the equation V=I/R.) <u><em>It should be V = I · R</em></u> .
(When solving for Resistance in a circuit and both voltage and current are known values, the equation I =V*R is not true, and not the way to solve it.) <u><em>If the resistance is what you're looking for, then the equation to use is </em></u><u><em>R = V / I</em></u><u><em> . </em></u>
<em>-- </em><u><em>If the voltage in a circuit is increased, the current will also increase.</em></u>
if the velocity of the car reduces from 70km/h to 50km/h then the speed of the car will be equal to the speed of the lorry...
thus the relative velocity will be 0
Vf=vi+at
Vf= (50m/s)+ (5m/s2)(3s)
Vf=65m/s
To solve this problem it is necessary to apply the concepts related to the Period of a body and the relationship between angular velocity and linear velocity.
The angular velocity as a function of the period is described as

Where,
Angular velocity
T = Period
At the same time the relationship between Angular velocity and linear velocity is described by the equation.

Where,
r = Radius
Our values are given as,


We also know that the radius of the earth (r) is approximately

Usando la ecuación de la velocidad angular entonces tenemos que



Then the linear velocity would be,

x

The speed would Earth's inhabitants who live at the equator go flying off Earth's surface is 463.96