1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
anygoal [31]
3 years ago
12

Which of the following will most likely be a sustainable environment?

Physics
2 answers:
Andrei [34K]3 years ago
7 0

Answer:

I think A

Explanation:

rusak2 [61]3 years ago
7 0
C. , i had to do this before :) hope this helps
You might be interested in
Which of the following are Electromagnetic Waves?
earnstyle [38]

Answer:

b

Explanation:

8 0
3 years ago
Ite
soldier1979 [14.2K]

For the sound wave passing through regions of the ocean with varying density, longer wavelengths correspond to greater density of the water.

<h3>What is effect of density of a medium on wavelength of a wave?</h3>

The density of a medium is directly proportional to the wavelength of a wave.

The higher the density of the medium, the longer the wavelength of a wave.

Therefore, for a sound wave passing through regions of the ocean with varying density, longer wavelengths correspond to greater density of the water.

Learn more about density and wavelength at: brainly.com/question/9486264

#SPJ1

4 0
1 year ago
A cylinder with a moving piston expands from an initial volume of 0.250 L against an external pressure of 2.00 atm. The expansio
Step2247 [10]

The final volume of the gas is 144.25 L

Explanation:

For an ideal gas kept at constant pressure, the work done by the gas on the surroundings is given by

W=p\Delta V = p(V_f - V_i)

where

p is the pressure of the gas

V_i is the initial volume

V_f is the final volume

For the gas in the cylinder in this problem,

p = 2.00 atm

V_i = 0.250 L

And we also know the work done,

W = 288 J

So we can solve the equation for V_f, the final volume:

V_f = V_i + \frac{W}{p}=0.250 + \frac{288}{2.00}=144.25 L

Learn more about ideal gases:

brainly.com/question/9321544

brainly.com/question/7316997

brainly.com/question/3658563

#LearnwithBrainly

7 0
2 years ago
A car is traveling at a constant speed of 33 m/s on a highway. At the instant this car passes an entrance ramp, a second car ent
Paha777 [63]

Answer:

0.8712 m/s²

Explanation:

We are given;

Velocity of first car; v1 = 33 m/s

Distance; d = 2.5 km = 2500 m

Acceleration of first car; a1 = 0 m/s² (constant acceleration)

Velocity of second car; v2 = 0 m/s (since the second car starts from rest)

From Newton's equation of motion, we know that;

d = ut + ½at²

Thus,for first car, we have;

d = v1•t + ½(a1)t²

Plugging in the relevant values, we have;

d = 33t + 0

d = 33t

For second car, we have;

d = v2•t + ½(a2)•t²

Plugging in the relevant values, we have;

d = 0 + ½(a2)t²

d = ½(a2)t²

Since they meet at the next exit, then;

33t = ½(a2)t²

simplifying to get;

33 = ½(a2)t

Now, we also know that;

t = distance/speed = d/v1 = 2500/33

Thus;

33 = ½ × (a2) × (2500/33)

Rearranging, we have;

a2 = (33 × 33 × 2)/2500

a2 = 0.8712 m/s²

3 0
2 years ago
A voltage V is applied to the primary coil of a step-up transformer with a 3:1 ratio of turns between its primary and secondary
Snezhnost [94]

Explanation:

Let N_p\ and\ N_s are the number of turns in primary and secondary coil of the transformer such that,

\dfrac{N_p}{N_s}=\dfrac{1}{3}

A resistor R connected to the secondary dissipates a power P_s=100\ W

For a transformer, \dfrac{N_s}{N_p}=\dfrac{V_s}{V_p}

V_s=(\dfrac{N_s}{N_p})V_p

V_s=3V_p...............(1)

The power dissipated through the secondary coil is :

P_s=\dfrac{V_s^2}{R}

100\ W=\dfrac{V_s^2}{R}

V_p^2=\dfrac{100R}{9}.............(2)

Let N_p'\ and\ N_s' are the new number of turns in primary and secondary coil of the transformer such that,

\dfrac{N_p'}{N_s'}=\dfrac{1}{24}

New voltage is :

V_s'=(\dfrac{N_s'}{N_p'})V_p'

V_s'=24V_p...............(3)

So, new power dissipated is P_s'

P_s'=\dfrac{V_s'^2}{R}

P_s'=\dfrac{(24V_p)^2}{R}

P_s'=24^2\times \dfrac{(V_p)^2}{R}

P_s'=24^2\times \dfrac{(\dfrac{100R}{9})}{R}

P_s'=6400\ Watts

So, the new power dissipated by the same resistor is 6400 watts. Hence, this is the required solution.

3 0
3 years ago
Other questions:
  • How does inertia affect a person who is not wearing a seatbelt during a collision?
    14·2 answers
  • Difference between impulse and impulsive force
    11·2 answers
  • 1.what is the contour interval of this map? <br><br> 2.what is the highest elevation in this map?
    7·2 answers
  • If it took Ms. Oldman 37 seconds to life a 400 N student up 15 m, how much power did she use?
    14·1 answer
  • What does a cell use to eliminate a substance that is too large to leave by diffusion?
    14·1 answer
  • How can you increase the current in a circuit?
    8·1 answer
  • 4. Are the forces acting on the chandelier unbalanced?​
    14·1 answer
  • 04 What is the pressure 40m under the sea if sea water has a density of 1100kg/m3? (atmospheric pressure is 101kPa)
    14·1 answer
  • Please Help!!!!!
    10·1 answer
  • How can weather be forecast​
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!