Explanation:
Given that,
Average power of sun 
We need to calculate the intensity of light at Earth's position
Using formula of intensity

Where, I = intensity
P = power
Put the value into the formula


So, The intensity is 1347.616 W/m².
(A). We need to calculate the pressure on a solar sail due to the light of the sun if it's fully reflective
Using formula for fully reflective

Put the value into the formula


(B). We need to calculate the pressure on a solar sail due to the light of the sun if it's fully reflective
Using formula for fully absorptive



Hence, This is the required solution.
They may be changed because they may find evidence of some thing that will change their perspective on things.
Explanation:
Fe₂O₃ + CO → Fe₃O₄ + CO₂
Balancing the equation above, we can derive simple mathematical equations that are very easy to solve.
aFe₂O₃ + bCO → cFe₃O₄ + dCO₂
a,b,c and d are the coefficients needed to balance the equation above;
Conserving Fe; 2a = 3c
O: 3a + b = 4c + 2d
C: b = d
let a = 1;
c = 
Since b = d
3a + d = 4c + 2d
3a = 4c + 2d - d
3a = 4c + d
a = 1, c = 
3 = 4 x
+ d
d = 
b = 
multiplying a, b, c and d by 3:
a = 3 b = 1 c = 2 and d = 1
3Fe₂O₃ + CO → 2Fe₃O₄ + CO₂
Learn more:
Balanced equation brainly.com/question/2612756
#learnwithBrainly
One of the concepts to be used to solve this problem is that of thermal efficiency, that is, that coefficient or dimensionless ratio calculated as the ratio of the energy produced and the energy supplied to the machine.
From the temperature the value is given as

Where,
T_L = Cold focus temperature
T_H = Hot spot temperature
Our values are given as,
T_L = 20\° C = (20+273) K = 293 K
T_H = 440\° C = (440+273) K = 713 K
Replacing we have,



Therefore the maximum possible efficiency the car can have is 58.9%