Answer:
11.3 g of H₂O will be produced.
Explanation:
The combustion is:
2C₈H₁₈ + 25O₂→ 16CO₂ + 18H₂O
First of all, we determine the moles of the reactants in order to find out the limiting reactant.
8 g / 114g/mol = 0.0701 moles of octane
37g / 32 g/mol = 1.15 moles of oxygen
The limiting reagent is the octane. Let's see it by this rule of three:
25 moles of oxygen react to 2 moles of octane so
1.15 moles of oxygen will react to ( 1.15 . 2)/ 25 = 0.092 moles of octane.
We do not have enough octane, we need 0.092 moles and we have 0.0701 moles. Now we work with the stoichiometry of the reaction so we make this rule of three:
2 moles of octane produce 18 moles of water
Then 0.0701 moles of octane may produce (0.0701 . 18)/2= 0.631 moles of water.
We convert the moles to mass → 0.631 mol . 18 g/1mol = 11.3 g of H₂O will be produced.
Answer:
Nitrogen gas (chemical symbol N) is generally inert, nonmetallic, colorless, odorless and tasteless. Its atomic number is 7, and it has an atomic weight of 14.0067. Nitrogen has a density of 1.251 grams/liter at 0 C and a specific gravity of 0.96737, making it slightly lighter than air.
Explanation:
Option C. The object is returning to the start at a constant speed.
<h3>
Data points of the Position vs Time graph</h3>
The following data points will be used to determine the motion of the object.
<u>Position Time</u>
12 4
10 6
2 8
0 10
From the data above, the position of the object is decreasing towards zero or start point.
Thus, the object is returning to the start at a constant speed.
Learn more about position here: brainly.com/question/2364404
#SPJ1
The maximum oxygen uptake is known as the VO2 max.