The equation is as follow,
<span> HBr </span>₍aq₎ + H₂O ₍l₎ →
Solution:
HBr being strong acid with Ka value of 1.0 × 10⁹. When HBr is added to water, water acts as a base and HBr acts as a acid. Water picks the proton (H⁺) from HBr and converts into Conjugate acid (H₃O⁺) ahile HBr is converted into Conjugate Base (Br⁻) after loosing proton. The equation for this reaction is as follow,
HBr ₍aq₎ + H₂O ₍l₎ → H₃O⁺ ₍aq₎ + Br⁻ ₍aq₎
For the compound B the following statement is correct-
B. It is an ether because it is unable to form a hydrogen bond, so it is less soluble in water.
The solubility of alcohol in water depends upon the capability of formation of hydrogen bond in the solute. Now in alcohol the -OH group is polar in nature which enhance the possibility of hydrogen bond formation and it is more soluble in water.
On the other hand although there presence a -O- functional group in ether. It is less soluble in water due to non polarity of the functional group.
From the given data it is seen that compound A is more soluble in water than compound B. Thus it may be predicted that compound A is alcohol and B is ether.
Henceforth, for the compound B the following statement is correct-
B. It is an ether because it is unable to form a hydrogen bond, so it is less soluble in water.
The reason of incorrect options:
A. compound B cannot be an alcohol as it is less soluble in water.
C. In ether the functional group is -O-, thus electronegative atom (O) is present.
D. As both the compound (alcohol and ether) has equal molecular mass thus the organic chain will be same in alcohol and the hydrogen bond interaction will be more prominent than the dispersion force between the -OH group.
The 2 represets 2 nitrogen gas atoms
Answer:
They both have the same density.
Explanation:
Density = mass/volume
10g ÷ 4 = 2.5
13g ÷ 5.2 = 2.5
Answer is:
The sun's energy is transferred through the vacuum of space to Earth