Answer:
Random particle motion in liquids and gases is a difficult concept for in temperature, the particles move faster as they gain kinetic energy.
Explanation:
False
nuclear fusion produces more energy than a nuclear fission reaction.
Answer:
0.55 atm
Explanation:
First of all, we need to calculate the number of moles corresponding to 1.00 g of carbon dioxide. This is given by

where
m = 1.00 g is the mass of the gas
Mm = 44.0 g/mol is the molar mass of the gas
Substituting,

Now we can find the pressure of the gas by using the ideal gas law:

where
p is the gas pressure
V = 1.00 L is the volume
n = 0.0227 mol is the number of moles
R = 0.082 L/(atm K mol) is the gas constant
T = 25.0 C + 273 = 298 K is the temperature of the gas
Solving the formula for p, we find

Although 1013.25 mb (760 mm Hg) is considered to be the standard atmospheric pressure at sea level, it does not mean that the pressure at this level has this value, actually this being 1011 mb.