1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lady_Fox [76]
3 years ago
10

1. Apply a constant force of 50 N directed to the right of the 50 kg Box. (2 pts)

Physics
1 answer:
kotegsom [21]3 years ago
7 0

As the box is moving with a constant velocity, the two forces acting on the box are canceling each other.

Then   friction force = 80 Newtons              but in the opposite direction.

Friction force =  Mu  * Normal force exerted by ground  =  Mu * weight of box

So we find Mu.

Mu = coefficient of friction between box and horizontal surface

          = Force of friction / weight  =  80 / 50 * 9.81 = 0.163

When an identical box is placed on top, the force of friction is

      = Mu * total weight = 0.163 * (50+50) * 9.81 = 159.9 Newtons

You might be interested in
⚠HI YOU GUYS HELLLP BRAINLIEST AND 100 PIONTS⚠ Use THE MAP
Setler [38]

Answer:

5.A mid-ocean ridge or mid-oceanic ridge is an underwater mountain range, formed by plate tectonics. This uplifting of the ocean floor occurs when convection currents rise in the mantle beneath the oceanic crust and create magma where two tectonic plates meet at a divergent boundary.

6.The Nazca plate is an oceanic plate, while the South American plate is continental. The fast moving Nazca plate is moving east towards the South American plate at a downward angle and converging. This process is called subduction, resulting in frequent earthquakes & production of the Andes Mountains.

7.The Nazca plate forms the southeastern part of the Pacific plate. The Nazca and the Pacific plate share both divergent and transform type of plate boundary. The Pacific and the Nazca plate are separating at an increasing rate of about 122-142mm/year.

8.Convection currents in the mantle and in the ocean are similar because they both are responsible for the shaping the Earth's surface. Two forces are behind the movement of Earth's huge land masses. Due to combined action of convection currents and gravity, Earth's plates are in constant motion.

Explanation:

8 0
4 years ago
HELP MEEEEEEEE PLEASEEEE
Lemur [1.5K]

Answer:

B Explain why the relationship between force and time is important to a helmet designer.

During a collision, a skater will suddenly come to a complete stop. This is a foam of acceleration. A helmet can change the amount of

hope you get a good grade

5 0
3 years ago
A good way to demagnitize something
USPshnik [31]

Answer:

heat it up to above 176f or apply alternating current

Explanation:

7 0
3 years ago
Very far from earth (at R- oo), a spacecraft has run out of fuel and its kinetic energy is zero. If only the gravitational force
Margaret [11]

Answer:

Speed of the spacecraft right before the collision: \displaystyle \sqrt{\frac{2\, G\cdot M_\text{e}}{R\text{e}}}.

Assumption: the earth is exactly spherical with a uniform density.

Explanation:

This question could be solved using the conservation of energy.

The mechanical energy of this spacecraft is the sum of:

  • the kinetic energy of this spacecraft, and
  • the (gravitational) potential energy of this spacecraft.

Let m denote the mass of this spacecraft. At a distance of R from the center of the earth (with mass M_\text{e}), the gravitational potential energy (\mathrm{GPE}) of this spacecraft would be:

\displaystyle \text{GPE} = -\frac{G \cdot M_\text{e}\cdot m}{R}.

Initially, R (the denominator of this fraction) is infinitely large. Therefore, the initial value of \mathrm{GPE} will be infinitely close to zero.

On the other hand, the question states that the initial kinetic energy (\rm KE) of this spacecraft is also zero. Therefore, the initial mechanical energy of this spacecraft would be zero.

Right before the collision, the spacecraft would be very close to the surface of the earth. The distance R between the spacecraft and the center of the earth would be approximately equal to R_\text{e}, the radius of the earth.

The \mathrm{GPE} of the spacecraft at that moment would be:

\displaystyle \text{GPE} = -\frac{G \cdot M_\text{e}\cdot m}{R_\text{e}}.

Subtract this value from zero to find the loss in the \rm GPE of this spacecraft:

\begin{aligned}\text{GPE change} &= \text{Initial GPE} - \text{Final GPE} \\ &= 0 - \left(-\frac{G \cdot M_\text{e}\cdot m}{R_\text{e}}\right) = \frac{G \cdot M_\text{e}\cdot m}{R_\text{e}} \end{aligned}

Assume that gravitational pull is the only force on the spacecraft. The size of the loss in the \rm GPE of this spacecraft would be equal to the size of the gain in its \rm KE.

Therefore, right before collision, the \rm KE of this spacecraft would be:

\begin{aligned}& \text{Initial KE} + \text{KE change} \\ &= \text{Initial KE} + (-\text{GPE change}) \\ &= 0 + \frac{G \cdot M_\text{e}\cdot m}{R_\text{e}} \\ &= \frac{G \cdot M_\text{e}\cdot m}{R_\text{e}}\end{aligned}.

On the other hand, let v denote the speed of this spacecraft. The following equation that relates v\! and m to \rm KE:

\displaystyle \text{KE} = \frac{1}{2}\, m \cdot v^2.

Rearrange this equation to find an equation for v:

\displaystyle v = \sqrt{\frac{2\, \text{KE}}{m}}.

It is already found that right before the collision, \displaystyle \text{KE} = \frac{G \cdot M_\text{e}\cdot m}{R_\text{e}}. Make use of this equation to find v at that moment:

\begin{aligned}v &= \sqrt{\frac{2\, \text{KE}}{m}} \\ &= \sqrt{\frac{2\, G\cdot M_\text{e} \cdot m}{R_\text{e}\cdot m}} = \sqrt{\frac{2\, G\cdot M_\text{e}}{R_\text{e}}}\end{aligned}.

6 0
3 years ago
What is Latent heat and also give types.<br>​
dmitriy555 [2]

Answer:

Latent heat is energy released or absorbed, by a body or a thermodynamic system, during a constant-temperature process. Two common forms of latent heat are latent heat of fusion (melting) and latent heat of vaporization (boiling).

Explanation:

8 0
2 years ago
Other questions:
  • The system is immersed in an environment with a constant high temperature T. What would be the energy expectation value of the s
    14·1 answer
  • Stapp rode a rocket sled, accelerating from rest to a top speed of 282 m/s (1015 km/h) in 5.00 s, and was brought jarringly back
    9·1 answer
  • WHY IS SATURN ONE OF THE COLDEST PLANETS IN OUR SOLAR SYSTEM
    14·1 answer
  • Which of the following is proportional to the net external force acting on a body?
    7·1 answer
  • How does energy affect a wave​
    6·1 answer
  • Un coche que lleva una velocidad constante de 90 km/hora durante 2 horas ¿Cuánto espacio recorre?Si encuentra un obstáculo en la
    14·1 answer
  • Some scientists believe that:
    7·2 answers
  • If a lever has a mechanical advantage of 5 and 50 N of force is used to lift a rock, what is the weight of the rock?
    13·1 answer
  • Use the passage to answer the question.
    7·1 answer
  • Burt and ned paddle their canoe 10 miles upstream and 5 miles downstream in 7 hours. if they can paddle 4 mph in calm water, how
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!