answer
option d is the correct answer
explanation
as we know frequency is equal to 1 /t
f= 457 Hz
t=1
SO, 1/457
=0.0022sev
Hooke's Law states that the extension is directly proportional to the force applied so:
F/x = constant
F₁/x₁ = F₂/x₂
2 / 0.02 = 1600 / x₂
x₂ = 16 m
Elastic work = 1/2 Fx
= 1/2 * 1600 * 16
= 12.8 kJ
Answer:
8.91 J
Explanation:
mass, m = 8.20 kg
radius, r = 0.22 m
Moment of inertia of the shell, I = 2/3 mr^2
= 2/3 x 8.2 x 0.22 x 0.22 = 0.265 kgm^2
n = 6 revolutions
Angular displacement, θ = 6 x 2 x π = 37.68 rad
angular acceleration, α = 0.890 rad/s^2
initial angular velocity, ωo = 0 rad/s
Let the final angular velocity is ω.
Use third equation of motion
ω² = ωo² + 2αθ
ω² = 0 + 2 x 0.890 x 37.68
ω = 8.2 rad/s
Kinetic energy,
K = 0.5 x 0.265 x 8.2 x 8.2
K = 8.91 J
Answer:
Force, |F| = 2100 N
Explanation:
It is given that,
Water from a fire hose is directed horizontally against at a rate of 50.0 kg/s,
Initial speed, v = 42 m/s
The momentum is reduced to zero, final speed, v = 0
The relation between the force and the momentum is given by :
|F| = 2100 N
So, the magnitude of the force exerted on the wall is 2100 N. Hence, this is the required solution.