Ans: Beat Frequency = 1.97HzExplanation:
The fundamental frequency on a vibrating string is

<span> -- (A)</span>
<span>here, T=Tension in the string=56.7N,
L=Length of the string=0.66m,
m= mass = 8.3x10^-4kg/m * 0.66m = 5.48x10^-4kg </span>
Plug in the values in Equation (A)
<span>so </span>

<span> = 197.97Hz </span>
<span>the beat frequency is the difference between these two frequencies, therefore:
Beat frequency = 197.97 - 196.0 = 1.97Hz
-i</span>
If you apply a little bit of force, one will move easier than the other since it is lighter.
Gravitational force depends on inverse square law. That is, gravitational force is inversely proportional to square of distance between asteroids.
As distance between them decreases, gravitational force increases. Hence A is correct.
Answer:
the rate of acceleration of the train is 4 m/s²
Explanation:
Given;
initial velocity of the train, u = 10 m/s
change in time of motion, dt = 5 s
final velocity of the train, v = 30 m/s
The rate of acceleration of the train is calculated as;

Therefore, the rate of acceleration of the train is 4 m/s²
Answer:
The answer is "
"
Explanation:
For point a:
Energy balance equation:


From the above equation:

because the rate of air entering the tank that is
constant.
Since the tank was initially empty and the inlet is constant hence,
Interpolate the enthalpy between
. The surrounding air
temperature:

Substituting the value from ideal gas:

Follow the ideal gas table.
The
and between temperature
Interpolate

Substitute values from the table.
For point b:
Consider the ideal gas equation. therefore, p is pressure, V is the volume, m is mass of gas.
(M is the molar mass of the gas that is
and R is gas constant), and T is the temperature.


For point c:
Entropy is given by the following formula:
