Solution:
According to the equations for 1-D kinematics. The only change to them is that instead one equation that describes general motion.
So we will have to use the equations twice: once for motion in the x direction and another time for the y direction.
v_f=v_o + at ……..(a)
[where v_f and v_o are final velocity and initial velocity, respectively]
Now ,
Initially, there was y velocity, however gravity began to act on the football, causing it to accelerate.
Applying this value in equation (a)
v_yf = at = -9.81 m/s^s * 1.75 = -17.165 m/s in the y direction
For calculating the magnitude of the equation we have to square root the given value
(16.6i - 17.165y)
\\
\left | V \right |=sqrt{16.6^{2}+17.165^{2}}\\ =
\sqrt{275.56+294.637225}\\=
\sqrt{570.197225}\\=
23.87[/tex]
Speed = wavelength × frequency
giving that frequency is 0, wavelength and speed are directionally proportional. wavelength decrease = speed decrease
To solve this problem we will apply the concepts related to the intensity included as the power transferred per unit area, where the area is the perpendicular plane in the direction of energy propagation.
Since the propagation occurs in an area of spherical figure we will have to


Replacing with the given power of the Bulb of 100W and the radius of 2.5m we have that


The relation between intensity I and 

Here,
= Permeability constant
c = Speed of light
Rearranging for the Maximum Energy and substituting we have then,




Finally the maximum magnetic field is given as the change in the Energy per light speed, that is,



Therefore the maximum value of the magnetic field is 
Answer:
F = -319.2 N
Explanation:
Given that,
The mass of a bicyclist, m = 70 kg
Mass of the bicycle = 9.8 kg
The speed of a bicycle, v = 16 m/s
We need to find the magnitude of the braking force of the bicycle come to rest in 4.0 m.
The braking force is given by :

So, the required force is 319.2 N.