First, we convert the moles of each substance into the concentration using the volume of the reactor.
[SO₃] = 0.425/1.5 = 0.283 M
[SO₂] = 0.208 / 1.5 = 0.139 M
[O₂] = 0.208/1.5 = 0.139 M
The equilibrium constant is calculated by:
Kc = [SO₃]² / [O₂][SO₂]²
Kc = (0.283)²/(0.139)(0.139)²
Kc = 29.8 = 2.98 x 10¹
The answer is C
<u>Answer 2 :</u> The given electronic configuration for a neutral atom of phosphorous in its ground state is incorrect.
Explanation :
A neutral atom of phosphorous has 15 electrons.
The given electronic configuration is incorrect.
The reason is, According to Aufbau principle, the electrons will be first filled in the sub-shell having lower orbital energy. As from the given configuration, 3p sub-shell has lower orbital energy than 4s sub-shell. So, the electrons will be filled in 3p sub-shell first. Hence, the ground state electronic configuration of neutral atom of phosphorous is,

<u>Answer 3 :</u>
Element Rubidium Magnesium Aluminium
Symbol Rb Mg Al
Group number 1 2 13
Number of valence 1 2 3
electrons
The order of general reactivity on the basis of number of valence electrons.
Rb > Mg > Al
Reason : The reactivity is determined by the number of electrons present in the outermost shell that means the element which have 1 valence electron will be more reactive because they can easily lose electrons.
Explanation:
Given parameters:
Wavelength of photon = 827nm = 827 x 10⁻⁹m
Unknown:
Energy of the photon = ?
Type of radiation = ?
Solution:
The energy of a photon can be derived using the expression below:
E =
h is the Planck's constant = 6.63 x 10⁻³⁴m²kg/s
c is the speed of light = 3 x 10⁸m/s
Insert the parameters and solve;
E =
E = 2.4 x 10⁻¹⁹J
Type of radiation:
Near infrared radiation
Answer:
a. 342.9 kJ of heat are absorbed.
Explanation:
Calculation of the moles of
as:-
Mass = 20.00 g
Molar mass of
= 17.031 g/mol
The formula for the calculation of moles is shown below:
Thus,

Given that:- 
It means that 1 mole of
undergoes reaction and absorbs 1168\ kJ of heat
So,
1168 mole of
undergoes reaction and absorbs
of heat
<u>Amount of heat absorbed = + 342.9 KJ</u>