Answer:
The result is 150 + 1.5d
Step-by-step explanation:
We want to translate the wordings into algebraic expression.
Firstly, we increase 120 by d%
d% = d/100
So increasing 120 by d % means;
120 + (d/100 * 120)
= 120 + 1.2d
Then increase this by 25%
= (120 + 1.2d) + 25/100(120 + 1.2d)
= 120 + 1.2d + (120+1.2d)/4
= 120 + 1.2d + 30 + 0.3d
= 120 + 30 + 1.2d + 0.3d
= 150 + 1.5d
Answer:
f(x)=(x-1)^2+5 with domain x>1 and range y>5 has inverse g(x)=sqrt(x-5)+1 with domain x>5 and range y>1.
Step-by-step explanation:
The function is a parabola when graphed. It is in vertex form f(x)=a(x-h)^2+k where (h,k) is vertex and a tells us if it's reflected or not or if it's stretched. The thing we need to notice is the vertex because if we cut the graph with a vertical line here the curve will be one to one. So the vertex is (1,5). Let's restrict the domain so x >1.
* if x>1, then x-1>0.
* Also since the parabola opens up, then y>5.
So let's solve y=(x-1)^2+5 for x.
Subtract 5 on both sides:
y-5=(x-1)^2
Take square root of both sides:
Plus/minus sqrt(y-5)=x-1
We want x-1>0:
Sqrt(y-5)=x-1
Add 1 on both sides:
Sqrt(y-5)+1=x
Swap x and y:
Sqrt(x-5)+1=y
x>5
y>1
A and d is the one I would pick
The two highlighted rows show that for the same amount of blue, Purple #1 uses <u>more</u> red than Purple #2.
This means that Purple #1 is <u>a redder</u> shade of purple than Purple #2.
Purple #2 is <u>a bluer</u> shade of purple than Purple #1.
Step-by-step explanation:
The two highlighted rows show that for the same amount of blue, Purple #1 uses <u>more</u> red than Purple #2.
- Making blue's quantity as 3 parts for purple #1 implies red part becomes 1.5 to maintain the ratio 1:2
- Purple #1 has 1/3 parts red and 2/3 parts blue. Purple #2 has 1/4th part red and 3/4th part blue.
- Hence, Purple #1 is <u>a redder</u> shade of purple than Purple #2.
- From the above explanation, Purple #2 is <u>a bluer</u> shade of purple than Purple #1.
Answer: I recommend using a site called "Desmos" it shows you where the points are. Hopefully, I helped you.