Answer:
1/6 b+3
Step-by-step explanation:
Answer: x= 2(2+sqrt(10)) , x=2(2-sqrt(10)
Step-by-step explanation:
x^2-8x=24 <- subtract 24 from both sides
x^2-8x-24 <- take quadratic formulat (-2+/- Sqrt(b^2 - 4ac)/2a
-(-8) +/- sqrt((-8)^2 - 4(1*-24) all over (2*1) <- simplify
(-(-8) +/- 4sqrt(10) )/2 <- sepereate
(-(-8) +/4sqrt(10) )/2 , (-(-8) - 4sqrt(10) )/2 <- simplify
2(2+sqrt(10)) , 2(2-sqrt(10) =x
Two ways:
1) guess factors(trial and error)
2) use quadratic formula.
If you use this method then a = -3, b = -6 and c = -1
x = -b +/- [sqrt(b^2 -4ac)/2a]
substituting a, b, and c into our equation we get:
x = - (-6)+/- [sqrt ((-6)^2) - 4(-3)(-1))/2 (-3)]
x = + 6 +/- [sqrt (36 -4 (3)/-6)] if I didnt make a mistake in my signs
x = + 6 +/- [sqrt (36 -12)/-6)]
x = 6 +/- [sqrt (24)/-6] but sqrt 6 x sqrt of 4 = sqrt 24 hence
x = 6 +/- [ sqrt 6 x sqrt 4 /-6] that is:
x = 6 +/- [sqrt 6 x 2 /-6 ]
so x = 6 + [sqrt 6 x 2/-6] and x = 6 - [sqrt 6 x 2/-6]
Answer:
P' = (7, - 8)
Step-by-step explanation:
Under the given translation (x + 4, y - 3)
Add 4 to the x- coordinate of P and subtract 3 from the y- coordinate of P
P' = (3 + 4, - 5 - 3 ) = (7, - 8)
45 should be the answer for that specific question.