By looking at the potential energies before and after the reaction, we can tell that the reaction is exothermic (final < initial) or endodermic (final > initial).
Also, the amount of activation energy gives an idea of the external energy required to initiate the reaction (for example, by heating the reactants).
Furthermore, by the same principle, we can also deduce the activation energy for the reverse reaction.
If a catalyst is available, the diagram will show a reduced activation energy, compared to a reaction without catalyst. However, it will also show that the catalyst does not alter the initial and final energies of the reaction.
Answer:
F = 3.6 kN, direction is 9.6º to the North - East
Explanation:
The force is a vector, so one method to find the solution is to work with the components of the vector as scalars and then construct the resulting vector.
Let's use trigonometry to find the component of the forces, let's use a reference frame where the x-axis coincides with the East and the y-axis coincides with the North.
Wind
X axis
F₁ = 2.50 kN
Tide
cos 30 = F₂ₓ / F₂
sin 30 = F_{2y} / F₂
F₂ₓ = F₂ cos 30
F_{2y} = F₂ sin 30
F₂ₓ = 1.20cos 30 = 1.039 kN
F_{2y} = 1.20 sin 30 = 0.600 kN
the resultant force is
X axis
Fₓ = F₁ₓ + F₂ₓ
Fₓ = 2.50 +1.039
Fₓ = 3,539 kN
F_y = F_{2y}
F_y = 0.600
to find the vector we use the Pythagorean theorem
F = 
F = 
F = 3,589 kN
the address is
tan θ = F_y / Fₓ
θ = tan⁻¹
θ = tan⁻¹
0.6 / 3.539
θ = 9.6º
the resultant force to two significant figures is
F = 3.6 kN
the direction is 9.6º to the North - East
C. The water cycle spreads water out evenly around the whole Earth
Answer: Final speed
Explaination: because its final.
Answer:
I don't think your appendix can explode because you ate too much honestly. It's not even possible to eat so much that your appendix explodes, and if you're feeling any pain it definitely isn't because your appendix is about to explode, believe me. Also you could just type it into the internet, that'd be a much faster solution.