Answer:
(C) Only if it starts moving
Explanation:
We know that work done is given by

So there are two case in which work done is zero
First case is that when force and displacement are perpendicular to each other
And other case is that when there is no displacement
So for work to be done there must have displacement, if there is no displacement then there is no work done
So option (c) will be the correct option
I think it’s b... not sure tho sorry
I'm not sure I completely understand the expression you want evaluated.
It looks like a fraction with the same exact thing in both the numerator and the denominator. A fraction like that always boils down to ' 1 '.
Explanation:
The electric field is defined as the change in the properties of space caused by the existence of a positively (+) or negatively (-) charged particle. The electric field can be represented by infinitely many lines from a particle, and those lines never intersect each other. Depending on the type of charge we can see different cases:
- Let's say we have a <u>positive charge alone (</u>image 1)<u>.</u> The field lines are drawn from the centre of the particle outwards to infinity (in other words, they disappear from the edge of the picture). Meaning the direction of the electric field points outwards the particle.
- For a <u>negative charge alone </u>(image 2)<u>,</u> the lines come from infinity to the centre, and point towards the particle (i.e. lines appear from the edge of the picture).
Let's see what happens if we have two charges together:
- <u>Two positive charges</u> (image 3): Since the charges are of the same type (positive), the particles repel each other. Then the field lines will avoid each other so they do not join. The charge is positive, so lines point outwards.
- <u>Two negative charges</u> (image 4): Again, the charges are both negative, so they repel. But they are negative, so the field points inwards.
- <u>Negative and positive charges</u> (image 5): They are different charges, so the force between them is attractive. This causes the field lines from both to join. They go out of the positive and come into the negative particle.
Image 6:
The lines are passing through infinite points of the space. If we choose a certain point and measure the electric field, we can see to which direction the electric field points. This is the direction of the electric field vector. It does not matter which point we choose; the electric field vector touches the field line only at this point, which means it is tangent to the field line.
The question is incomplete, the concentration of qam and humulin is not given unless R is used concentration
Complete question:
A physician orders Humulin 50/50 44 units and Humulin N 40 units qam and Humulin R 35 units ac evening meal subcutaneously. How many total units of insulin are administered each morning?
Answer:
the total units of insulin admistered each morning
= 22 units of qam and humulin
Explanation:
given
44 units and Humnlin N
with concentration 50/100 = 1/2 = 0.5
∴ 44 × 0.5 ≈ 22 units in the morning
regular insulin administered each day
(22 + 35)units of qam and humulin
= 57units