W=gm
where g - gravitation
m - mass
w - weight
as gravitation equals to zero, multiplying by 0 gives W=0
It is not possible to tell whether and object is heavy or light
Answer:
15.4 kg.
Explanation:
From the law of conservation of momentum,
Total momentum before collision = Total momentum after collision
mu+m'u' = V(m+m').................... Equation 1
Where m = mass of the first sphere, m' = mass of the second sphere, u = initial velocity of the first sphere, u' = initial velocity of the second sphere, V = common velocity of both sphere.
Given: m = 7.7 kg, u' = 0 m/s (at rest)
Let: u = x m/s, and V = 1/3x m/s
Substitute into equation 1
7.7(x)+m'(0) = 1/3x(7.7+m')
7.7x = 1/3x(7.7+m')
7.7 = 1/3(7.7+m')
23.1 = 7.7+m'
m' = 23.1-7.7
m' = 15.4 kg.
Hence the mass of the second sphere = 15.4 kg
Answer: the value of g in Death Valley is 10.417 m/s²
Explanation:
Given that;
acceleration due to gravity at the point is g = 9.8 m/s²
Lets say the acceleration due to gravity at the bottom of Death valley is g'
as the period of the pendulum is decreased by 3.00%
T' = 0.97 T
T is the period of the pendulum at sea level and T' is the period of the pendulum at bottom of Death valley
therefore from the relation
T = 2π√(l/g)
g'/g = T²/T'²
g' = (T²/ (0.97T)²)g
g' = 1.063g
g' = 10.417 m/s²
therefore the value of g in Death Valley is 10.417 m/s²
Answer: A literature review consists of an overview, a summary, and an evaluation (“critique”) of the current state of knowledge about a specific area of research.
Explanation:
Answer:
I would say the net force acting on the car is in the opposite direction of the car's motion is correct