Answer: The free - body diagrams for blocks A and B. frictionless surface by a constant horizontal force F = 100 N. Find the tension in the cord between the 5 kg and 10 kg blocks. The string that attaches it to the block of mass M2 passes over a frictionless pulley of negligible mass. The coefficient of kinetic friction Hk between M.
Explanation: Hope this helped :)
Answer:
a. Object A
Explanation:
The mass of an object implies the quantity of matter in it, while the weight is the amount of gravitational force applied on an object.
The object A has a mass of 25 lbs, but object B on the earth has a weight, W, of 25 N.
So that,
For object A on the moon, mass = 25 lbs
For object B on the earth, W = 25 N,
W = m x g
25 = m x 10 (g = 10 m/
)
m = 
= 2.5 lbs
Mass of object B is 2.5 lbs.
Therefore, the mass of the object A is more than that of B.
Answer:
where is the graph I can't see it how can I solve the problem if I don't see the graph can you show the graph please
Answer: a) 139.4 μV; b) 129.6 μV
Explanation: In order to solve this problem we have to use the Ohm law given by:
V=R*I whre R= ρ *L/A where ρ;L and A are the resistivity, length and cross section of teh wire.
Then we have:
for cooper R=1.71 *10^-8* 1.8/(0.001628)^2= 11.61 * 10^-3Ω
and for silver R= 1.58 *10^-8* 1.8/(0.001628)^2=10.80 * 10^-3Ω
Finalle we calculate the potential difference (V) for both wires:
Vcooper=11.62* 10^-3* 12 * 10^-3=139.410^-6 V
V silver= 10.80 10^-3* 12 * 10^-3=129.6 10^-6 V
<span>a. the amount of matter in a given volume </span>