Answer:

Explanation:
Acceleration is given by

where
u is the initial velocity
v is the final velocity
t is the time interval
In this problem:
is the initial velocity
is the final velocity
t = 2 s is the time
Substituting, we find the acceleration:

Answer:
Explanation:
Using the efficiency formula;
Efficiency = Work done by the machine (output)/work done on the machine (input) ×100%
Efficiency =w/50 ×100
90 = 100w/50
Cross multiply
90×50 = 100W
4500 = 100W
W = 4500/100
W = 45Joules
Hence the lever does 45Joules of work on its load
2) Mechanical Advantage= Load/Effort
Given
MA = 4
Load = 500N
4 = 500/Effort
Effort = 500/4
Effort =125N
Hence the effort required to lift the load is 125N
Answer: 
Explanation:
Given
Initial position of object is (4.4 i+5 j)
Final position of object is (11.6 i -2 j)
Force acting (4i-9j)
Work done is given by

Initial kinetic energy

Change in kinetic energy is equal to work done by object

Answer:
104 N
Explanation:
Calculate the spring stiffness:
F = kx
32.5 N = k (0.500 cm)
k = 65 N/cm
Find the force for the new length:
F = kx
F = (65 N/cm) (1.60 cm)
F = 104 N
Answer:
k = 
b = 
t = 
Solution:
As per the question:
Mass of the block, m = 1000 kg
Height, h = 10 m
Equilibrium position, x = 0.2 m
Now,
The velocity when the mass falls from a height of 10 m is given by the third eqn of motion:

where
u = initial velocity = 0
g = 10
Thus

Force on the mass is given by:
F = mg = 
Also, we know that the spring force is given by:
F = - kx
Thus

Now, to find the damping constant b, we know that:
F = - bv

Now,
Time required for the platform to get settled to 1 mm or 0.001 m is given by:
