Answer:
Explanation:
Let's answer these statements
.1) True. This is the law of reflection.
.2) False. The speed of light depends on the index of refraction n = c / v
v = c / n
.3) True. The frequency creates a forced oscillation, whereby the atoms re-emit at the same incident frequency
.4) False. The index of refraction is a measure of the ratio of the speed of light in a vacuum and the material environment, the ability to change the trajectory is given by the law of refraction
.5) True. True due to the change in beam trajectory due to the law of refraction
.6 False. The phenomenon occurs when you pass from a medium with a higher index to one with a lower ratio, because the refracted beam separates from the normal
.7) True.
.8) False so that the lightning approach is valid Lam >> d,
.9) True.
Answer: Hi!
A terrestrial planet is composed of a solid substance like rock or earth. A few examples are our planet, Earth, and the red planet, Mars. These are the planets that are the closest to the sun. There are four terrestrial planets in total. The only known terrestrial planet that has life, however, is our own, Earth! Earth has the perfect conditions for supporting life forms.
Hope this helps!
Gravity ALWAYS does that, and electrostatic force does it when two objects have opposite charges.
Answer:
Sound intensity is the amount of energy carried by sound versus loudness is a subjective measurement of the audible sound.
Sound intensity is measured in watt per square meter where loudness is measured in sones (sone is a subjective measurement and not an SI unit)
Answer:
Option C. 30 m
Explanation:
From the graph given in the question above,
At t = 1 s,
The displacement of the car is 10 m
At t = 4 s
The displacement of the car is 40 m
Thus, we can simply calculate the displacement of the car between t = 1 and t = 4 by calculating the difference in the displacement at the various time. This is illustrated below:
Displacement at t = 1 s (d1) = 10 m
Displacement at t= 4 s (d2) = 40
Displacement between t = 1 and t = 4 (ΔD) =?
ΔD = d2 – d1
ΔD = 40 – 10
ΔD = 30 m.
Therefore, the displacement of the car between t = 1 and t = 4 is 30 m.