Answer:
250 mL (total solution) = 104 mL (stock solution) + 146 mL (water)
Explanation:
Data Given
M1 = 6.00 M
M2 = 2.5 M
V1 = 250 mL
V2 = ?
Solution:
As the chemist needs to prepare 250 mL of solution from 6.00 M ammonium hydroxide solution to prepare a 2.50 M aqueous solution of ammonium hydroxide.
Now
first he have to determine the amount of ammonium hydroxide solution that will be taken from6.00 M ammonium hydroxide solution
For this Purpose we use the following formula
M1V1=M2V2
Put values from given data in the formula
6 x V1 = 2.5 x 250
Rearrange the equation
V1 = 2.5 x 250 /6
V1 = 104 mL
So 104 mL is the volume of the solution which we have to take from the 6.00 M ammonium hydroxide solution to prepare 2.5 M aqueous solution of ammonium hydroxide
But we have to prepare 250 mL of the solution.
so the chemist will take 104 mL from 6.00 M ammonium hydroxide solution and have to add 146 mL water to make 250 mL of new solution.
in this question you have to tell about the amount of water that is 146 mL
250 mL (total solution) = 104 mL (stock solution) + 146 mL (water)
Answer:
84.8 mL
Explanation:
From the question given above, the following data were obtained:
Mass of CuNO₃ = 3.53 g
Molarity of CuNO₃ = 0.330 M
Volume of solution =?
Next, we shall determine the number of mole in 3.53 g of CuNO₃. This can be obtained as follow:
Mass of CuNO₃ = 3.53 g
Molar mass of CuNO₃ = 63.5 + 14 + (16×3)
= 63.5 + 14 + 48
= 125.5 g/mol
Mole of CuNO₃ =?
Mole = mass / Molar mass
Mole of CuNO₃ = 3.53 / 125.5
Mole of CuNO₃ = 0.028 moles
Next, we shall determine the volume of the solution. This can be obtained as follow:
Molarity of CuNO₃ = 0.330 M
Mole of CuNO₃ = 0.028 moles
Volume of solution =?
Molarity = mole /Volume
0.330 = 0.028 / Volume
Cross multiply
0.330 × Volume = 0.028
Divide both side by 0.330
Volume = 0.028 / 0.330
Volume = 0.0848 L
Finally, we shall convert 0.0848 L to millilitres (mL). This can be obtained as follow:
1 L = 1000 mL
Therefore,
0.0848 L = 0.0848 L × 1000 mL / 1 L
0.0848 L = 84.8 mL
Therefore, the volume of the solution is 84.8 mL.
An anchoring phenomenon anchors all of the learning within a unit. So, it is a unit level event that the classroom is trying to make sense of as they engage in a series of lessons.
Since the questions the students ask about the anchor drive the learning within the unit, the anchor should be complex and require an understanding of several big science ideas to explain.
At strategic moments, the class revisits the anchoring phenomenon to review their initial questions to see which they have answered, which they are making progress on, and what new questions they may have to help us continue learning about the phenomenon.
Throughout the unit, the classroom and each student should be given opportunities to share their thinking and how it relates to the anchoring phenomenon.
YOU SHOULD PUT IT IN YOUR OWN WORDS THOUGH <3
Answer: the molecular altatude of the supercalifragilistic gene should expand by 100%,
L
L
L
L
L
L
L
L
L
L
L
Explanation: