Carbon dating has<span> given archeologists a more accurate method by which they </span>can<span> determine the age of ancient artifacts. The </span>halflife<span> of </span>carbon 14<span> is </span>5730<span> ± 30 </span>years<span>, and the method of dating lies in trying to determine how </span>much carbon 14<span> (</span><span>the radioactive isotope of carbon) is present in the artifact and comparing it to levels</span>
Answer: The amount of energy needed to move an electron from one zone to another is a fixed, finite amount. The electron with its extra packet of energy becomes excited, and promptly moves out of its lower energy level and takes up a position in a higher energy level.
Explanation:
Sorry no se inglés
Bdnnfncnfnfnfn
The intermolecular forces, such as hydrogen bonds or van der Waals attractions, which draw one molecule to its neighbors, govern a substance's physical properties. Due to the relatively weak intermolecular forces of attraction, molecular substances typically take the form of gases, liquids, or low melting point solids.
<h3>How do the intermolecular forces affect physical properties?</h3>
The forces that bind two molecules together are known as intermolecular forces. Intermolecular forces have an impact on physical properties. Strong and weak forces both exist; the stronger the force, the more energy is needed to separate the molecules from one another. As intermolecular forces increase melting, boiling, and freezing points rise.
The following intermolecular forces are listed in order of strength:
- Van der Waals dispersion forces
- Van der Waals dipole-dipole interactions
- Hydrogen bonding
- Ionic bonds
It would take very little energy to separate two molecules if they are connected by van der Waals dispersion forces. On the other hand, it requires a lot more energy to separate two molecules that are joined together by ionic bonds.
To know more about molecules refer to: brainly.com/question/1819972
#SPJ1