Answer:
<h3>The mass of an object is the same on Earth, in orbit, or on the surface of the Moon. ... 1N=1kg ⋅m/s2. 1 N = 1 kg · m/s 2 . ... The gravitational force on a mass is its weight. ... </h3>
Explanation:
<h3>ILY:)</h3>
Let's use the mirror equation to solve the problem:

where f is the focal length of the mirror,

the distance of the object from the mirror, and

the distance of the image from the mirror.
For a concave mirror, for the sign convention f is considered to be positive. So we can solve the equation for

by using the numbers given in the text of the problem:



Where the negative sign means that the image is virtual, so it is located behind the mirror, at 8.6 cm from the center of the mirror.
Answer:
Fx1 (6 m) sin 60 = 300 (3 m) cos 60 balancing torques about floor
Fx1 = 900 * 1/2 / 5.20 = 86.6 N this is the horizontal force that must be supplied by the wall to balance torques about the floor
This is also equal to the static force of friction that must be applied at the point of contact with the floor to balance forces in the x-direction.
Fx1 = Fx2 = 86.6 N
Answer:
Explanation:
parallel capacitances add directly
Series capacitances add by reciprocal of sum of reciprocals.
Ceq = [ C ] + [1 / (1/C + 1/C)] + [1 / (1/C + 1/C + 1/C)]
Ceq = [ C ] + [C / 2] + [C / 3]
Ceq = [ 6C/6 ] + [3C / 6] + [2C / 6]
Ceq = 11C/6