1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
VladimirAG [237]
4 years ago
15

If you designed a rollercoaster, how might you design it? Would you have friction?

Physics
1 answer:
kvasek [131]4 years ago
4 0
Yes, because you would need friction to slow down the rollercoaster to a stop. 
You might be interested in
In order to safely conduct any experiment in the laboratory, it is crucial that you
vekshin1
<span>Lab Safety Rules:

Report all accidents, injuries, and breakage of glass or equipment to instructor immediately. Keep pathways clear by placing extra items (books, bags, etc.) on the shelves or under the work tables. If under the tables, make sure that these items can not be stepped on. Long hair (chin-length or longer) must be tied back to avoid catching fire. Wear sensible clothing including footwear. Loose clothing should be secured so they do not get caught in a flame or chemicals.<span>Work quietly — know what you are doing by reading the assigned experiment before you start to work. Pay close attention to any cautions described in the laboratory exercises</span> Do not taste or smell chemicals.<span> Wear safety goggles to protect your eyes when heating substances, dissecting, etc.</span> Do not attempt to change the position of glass tubing in a stopper.<span> Never point a test tube being heated at another student or yourself. Never look into a test tube while you are heating it.</span><span>Unauthorized experiments or procedures must not be attempted.</span>Keep solids out of the sink. Leave your work station clean and in good order before leaving the laboratory. Do not lean, hang over or sit on the laboratory tables. Do not leave your assigned laboratory station without permission of the teacher. Learn the location of the fire extinguisher, eye wash station, first aid kit and safety shower. Fooling around or "horse play" in the laboratory is absolutely forbidden. Students found in violation of this safety rule will be barred from participating in future labs and could result in suspension. Anyone wearing acrylic nails will not be allowed to work with matches, lighted splints, Bunsen burners, etc. Do not lift any solutions, glassware or other types of apparatus above eye level. Follow all instructions given by your teacher.Learn how to transport all materials and equipment safely. No eating or drinking in the lab at any time! </span>
3 0
3 years ago
A 1.1-kg object is suspended from a vertical spring whose spring constant is 120 N/m. (a) Find the amount by which the spring is
andriy [413]

Answer:

e = 0.0898m

v = 2.07m/s

Explanation:

a) According to Hooke's law

F = ke

e is the extension

k is the spring constant

Since F = mg

mg = ke

e = mg/k

Substitute the given value

e = 1.1(9.8)/120

e = 10.78/120

e = 0.0898m

Hence it is stretched by 0.0898m from its unstrained length

2) Total Energy = PE+KE+Elastic potential

Total Energy = mgh +1/2mv²+1/2ke²

Substitute the given value

5.0= 1.1(9.8)(0.2)+1/2(1.1)v²+1/2(120)(0.0898)²

Solve for v

5.0 = 2.156+0.55v²+0.48338

5.0-2.156-0.48338= 0.55v²

2.36 =0.55v²

v² = 2.36/0.55

v² = 4.29

v ,= √4.29

v = 2.07m/s

Hence the required velocity is 9.28m/s

4 0
3 years ago
NEED HELP ASAP
Dafna11 [192]

Answers:

a) -2.54 m/s

b) -2351.25 J

Explanation:

This problem can be solved by the <u>Conservation of Momentum principle</u>, which establishes that the initial momentum p_{o} must be equal to the final momentum p_{f}:  

p_{o}=p_{f} (1)  

Where:  

p_{o}=m_{1} V_{o} + m_{2} U_{o} (2)  

p_{f}=(m_{1} + m_{2}) V_{f} (3)

m_{1}=110 kg is the mass of the first football player

V{o}=-7 m/s is the velocity of the first football player (to the south)

m_{2}=75 kg  is the mass of the second football player

U_{o}=4 m/s is the velocity of the second football player (to the north)

V_{f} is the final velocity of both football players

With this in mind, let's begin with the answers:

a) Velocity of the players just after the tackle

Substituting (2) and (3) in (1):

m_{1} V_{o} + m_{2} U_{o}=(m_{1} + m_{2}) V_{f} (4)  

Isolating V_{f}:

V_{f}=\frac{m_{1} V_{o} + m_{2} U_{o}}{m_{1} + m_{2}} (5)

V_{f}=\frac{(110 kg)(-7 m/s) + (75 kg) (4 m/s)}{110 kg + 75 kg} (6)

V_{f}=-2.54 m/s (7) The negative sign indicates the direction of the final velocity, to the south

b) Decrease in kinetic energy of the 110kg player

The change in Kinetic energy \Delta K is defined as:

\Delta K=\frac{1}{2} m_{1}V_{f}^{2} - \frac{1}{2} m_{1}V_{o}^{2} (8)

Simplifying:

\Delta K=\frac{1}{2} m_{1}(V_{f}^{2} - V_{o}^{2}) (9)

\Delta K=\frac{1}{2} 110 kg((-2.5 m/s)^{2} - (-7 m/s)^{2}) (10)

Finally:

\Delta K=-2351.25 J (10) Where the minus sign indicates the player's kinetic energy has decreased due to the perfectly inelastic collision

6 0
3 years ago
a baseball is hit 3 feet above ground level at 100 feet per second and at an angle of 45 with respect to the ground. (g=32 feet/
LiRa [457]

Answer:

hmax=81ft

Explanation:

Maximum height of the object is the highest vertical position along its trajectory.

The vertical velocity is equal to 0 (Vy = 0)

0=V_{y}-g*t=v_{0}*sin(\alpha)-g*th\\

we isolate th (needed to reach the maximum height hmax)

th = \frac{v_{0}*sin(\alpha)}{g}

The formula describing vertical distance is:

y = Vy * t-g* t^{2} / 2

So, given y = hmax and t = th, we can join those two equations together:

hmax = Vy* th-g*th^{2}/2

hmax =Vo^{2}*sin(\alpha )^{2}/(2*g)

if we launch a projectile from some initial height h all you need to do is add this initial elevation

hmax =h+Vo^{2}*sin(\alpha)^{2}/(2*g)

hmax =3+100^{2}*sin(45)^{2}/(2 * 32)=81 ft

6 0
3 years ago
A block is pulled across a flat surface at a constant speed using a force of 50 newtons at an angle of 60 degrees above the hori
vladimir2022 [97]

The magnitude of the friction force is 25 N

Explanation:

To solve this problem, we just have to analyze the forces acting on the block along the horizontal direction. We have:

  • The horizontal component of the pulling force, F cos \theta, where F = 50 N is the magnitude and \theta=60^{\circ} is the angle between the direction of the force and the horizontal; this force acts in the  forward direction
  • The force of friction, F_f, acting in the backward direction

According to Newton's second law, the net force acting on the block in the horizontal direction must be equal to the product between the mass of the block and its acceleration:

\sum F_x = ma_x

where

m is the mass of the block

a_x is the horizontal acceleration

However, the block is moving at constant speed, so the acceleration is zero:

a_x = 0

So the equation becomes

\sum F_x = 0 (1)

The net force here is given by

\sum F_x = F cos \theta - F_f (2)

And so, by combining (1) and (2), we find the magnitude of the friction force:

F cos \theta - F_f = 0\\F_f = F cos \theta = (50)(cos 60^{\circ})=25 N

Learn more about  force of friction:

brainly.com/question/6217246

brainly.com/question/5884009

brainly.com/question/3017271

brainly.com/question/2235246

#LearnwithBrainly

4 0
3 years ago
Other questions:
  • A person standing waist-deep in a swimming pool appears to have short legs because of light
    5·1 answer
  • A piece of wood is floating in a bathtub. A second piece of wood sits on top of the first piece, and does not touch the water. I
    11·1 answer
  • Which of the following is a true statement about objects in a vacuum?
    10·2 answers
  • A cave rescue team lifts an injured spelunker directly upward and out of a sinkhole by means of a motor-driven cable. The lift i
    13·1 answer
  • What is 7.4×10 to the second power​
    11·1 answer
  • Which is a true statement regarding the law of mass balance? A.Solids, gases, and liquids have their own specific equations for
    7·1 answer
  • For a moving object, the force acting on the object varies directly with the objects acceleration. When a force of 24N acts on a
    11·1 answer
  • HELP please now :(
    14·1 answer
  • State the laws of reflection​
    8·1 answer
  • A wave has frequency of 50 Hz and a wavelength of 10 m. What is the speed of the wave? Group of answer choices
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!