Explanation:
It is given that,
The Displacement x of particle moving in one dimension under the action of constant force is related to the time by equation as:

Where,
x is in meters and t is in sec
We know that,
Velocity,

(a) i. t = 2 s

At t = 4 s

(b) Acceleration,

Pu t = 3 s in the above equation
So,

Hence, this is the required solution.
Answer:
2000 kg
Explanation:
Given that Which will have a larger momentum when moving at the same speed: a 2,000-kg truck or a 1,000-kg sedan
According to the definition of momentum, momentum is the product of mass and velocity.
That is,
Momentum = mass × velocity
Since velocity or speed is the same, then, the one of higher mass will have a greater momentum.
Therefore, the 2000 kg truck will have the greater momentum.
Answer:
Explanation:
Speed = distance / time
Velocity = displacement / time
So ,
Speed = 50 km / 0.5 hr = 100 km/h
Velocity = 40 km / 0.5hr = 80 km/h
Use a=(dv/dt) (change in velocity/ change in time)=acceleration
(1.2/5)=acceleration
F=ma (Newton's second law, Force= Mass x Acceleration
=960 x 0.24 F=230.4N If T<230.4N then the tow rope will hold
Answer:

Explanation:
In order to solve this question we need to know that
. Then we need to convert 4 minutes into seconds and cm into m. We can do that by multiplying the number of minutes by 60 (because there is 60 seconds in one minute) and dividing the number of cm by 100 (because there is 100 cm in one m). So.......
4min = 4 x 60s = 240s
300cm = 300/100 m = 3m
Now we know that distance = 300m, and that the time = 4min = 240s ⇒
⇒ 