At the left side of the reaction
Explanation:
the reaction is spontaneous
Answer:
The time taken for the ball to return to the starting point is is 7.4 s
Explanation:
Given;
initial velocity of the ball, u = 36 m/s
the final vellocity at maximum height, v = 0
let time taken for the ball to reach maxmimum height = t
Time taken for the ball to return to the starting point is known as time of flight, calculated as;

T = (2 x 36) / 9.8
T = 7.4 s
Therefore, the time taken for the ball to return to the starting point is is 7.4 s
Answer:
14.2 m
Explanation:
Using conservation of energy:
PE at top = KE at bottom
mgh = ½ mv²
h = v² / (2g)
h = (16.7 m/s)² / (2 × 9.8 m/s²)
h = 14.2 m
Using kinematics:
Given:
v₀ = 16.7 m/s
v = 0 m/s
a = -9.8 m/s²
Find: Δy
v² = v₀² + 2aΔy
(0 m/s)² = (16.7 m/s)² + 2 (-9.8 m/s²) Δy
Δy = 14.2 m
Answer:
Which sentence from the passage shows that the function of the river depicted here has carried through to modern times?
Explanation:
Which sentence from the passage shows that the function of the river depicted here has carried through to modern times?