Answer:
For these problems, we need to compare the theoretical yield that we'd get from performing stoichiometry to the actual yield stated in the problem. % yield is the actual yield/theoretical yield x 100%
Cu + 2 AgNO₠→ Cu(NOâ‚)â‚‚ + 2 Ag ==> each mole of copper yields two moles of silver
12.7-g Cu x ( 1 mol Cu /63.5-g Cu) x ( 2 mol Ag / 1 mol Cu) x (108-g Ag / 1 mol Ag) = 43.2-g Ag. This is the theoretical yield. Now, since we got 38.1-g Ag our % yield is:
38.1-g/43.2-g x 100% = 88.2%
Explanation:
The metalloids are on the right side of the periodic table B, Si, Ge, As, Sb, Te, and At. The nonmetals are also on the right side next to the metalloids, there should be a He at the top right of the periodic table and there should be one more nonmetal at the top left of the periodic table that is H. And from the metals they are all on the middle next to the metalloids, starting from Li, Be, Na, and Mg as so on all of those are metals.
Answer:
Protons: 84
Neutrons: 127
Explanation:
The number of protons is the atomic number. The number of neutrons can be found by subtracting the proton number (84) from the isotope number (211)
Answer:
Explanation:
The chemical equation is:
There are several definitions of acid and bases: Arrhenius', Bronsted-Lowry's and Lewis'.
Bronsted-Lowry model defines and <em>acid</em> as a donor of protons, H⁺.
In the given equation HNO₃ is such substance: it releases an donates its hdyrogen to form the H₃O⁺ ion.
On the other hand, a <em>base</em> is a substance that accepts protons.
In the reaction shown, H₂O accepts the proton from HNO₃ to form H₃O⁺.
Thus, H₂O is a base.
In turn, on the reactant sides the substances can be classified as acids or bases.
H₃O⁺ contain an hydrogen that can be donated and form H₂O; thus, it is an acid (the conjugated acid), and NO₃⁻ can accept a proton to form HNO₃; thus it is a base (the conjugated base).
Answer:
The type of reaction for the following equation is combustion equation.
Explanation:
Combustion reaction is defined as the chemical reaction in which a hydrocarbon reacts with oxygen gas to produce carbon dioxide gas and water molecule.

The reaction given to us:

When 1 mole of ethane reacts with 7/2 moles of oxygen gas it gives 3 moles of water and 2 moles of carbon dioxide gas.
The type of reaction for the following equation is combustion equation.