Answer:
Hi, a cheerful teen willing to help,
wishing you a splendiferous day ahead...
Explanation:
1ai. The most dense is Tungsten.
1aii. The least dense is Sodium.
1aiii. The strongest is Tungsten.
1b. All metals conduct electricity.
They are all magnetic except magnetic.
and all solid at room temperature except mercury.
1c. Mercury is a liquid at room temperature.
1d. Tungsten is used as filament for light bulbs due to its high melting point and it doesn't oxidize, this the filament won't melt.
1e. The lump of gold will sink because it is more dense than mercury.
Answer: Option (4) is the correct answer.
Explanation:
It is known that equilibrium constant is represented as follows for any general reaction.

K = ![\frac{[C][D]}{[A][B]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BC%5D%5BD%5D%7D%7B%5BA%5D%5BB%5D%7D)
As equilibrium constant is directly proportional to the concentration of products so more is the value of equilibrium constant more will be the number of products formed.
As a result, more is the time taken by the reaction to reach towards equilibrium. Whereas smaller is the value of equilibrium constant more rapidly it will reach towards the equilibrium.
Thus, we can conclude that cases where K is a very small number will require the LEAST time to arrive at equilibrium.
Between 23 and 87%
Sorry if I’m wrong
Answer:
a. +2
b. +3
c. -1
Explanation:
The typical oxidation states can be determined from the periodic table based on the number of valence electrons an atom has.
a. Calcium belongs to group 2A, meaning it has 2 valence electrons and, therefore, would have an oxidation state of +2 in compounds.
b. Aluminum is in group 3A, meaning it has 3 valence electrons and would have an oxidation state of +3 in compounds when the 3 electrons are lost.
c. Fluorine would become fluorine if it gained 1 additional electron to achieve an octet, so its oxidation state would be -1.