Conjugate base pairs are acid and bases having common features. These features are the equal gain or loss of protons of the pairs. Conjugate pairs should always be one base and one acid. One would not exist without the other. Conjugate acids are the substances that gains protons while conjugates bases are those that loses protons. <span>The substances in the equilibrium reaction that is given is identified as follows:
HCO3^- + H2O <-----> CO3^2- + H3O^+
acid base conjugate base conjugate acid
HCO3^- ion is an intermediate molecule of CO2 and CO3^2-. When we add OH- to HCO3^-, we produce CO3^2-. And when we add H+ to HCO3, we produce CO2. </span>
2-7-1
<h3>Further explanation
</h3>
Electrons can move the shell up or down by releasing energy or absorbing energy
Excited electrons show higher electron transfer to the shell by absorbing energy
So it can be concluded that there are 2 conditions:
Ground state is the state of electrons filling shell with the lowest energy levels.
Excited state is the state of electrons which occupies a higher energy level
The state of excited electrons can be seen from the presence of electrons which do not fill the skin completely but fill the skin afterward
2-7-1
From its 8 electron configuration, filling 3 shells, 2 electrons in the firs shell, 7 electrons in the second shell and 1 electron in the third shell
the electrons in the third shell should fill the electrons in the second shell first according to Aufbau rule (lower energy shells)

Maybe because gravity has control of each formation of the solarsydtem thats why its just a guess
The correct answer for this question is this one: " a.The solution has a volume of 25 mL "
The observation that shows a quantitative observation is when you are talking about numeric data. Just like this one, <em>The solution has a volume of 25 mL </em>
Hope this helps answer your question and have a nice day ahead.
Isotopes of any given factor all incorporate the equal variety of protons, so they have the identical atomic wide variety (for example, the atomic wide variety of helium is usually 2). Isotopes of a given factor include exceptional numbers of neutrons, therefore, special isotopes have special mass numbers.