No because people change mentally over time. They could let some problems go or could develop others
Answer:
The ramp lands at an horizontal distance of 3.989 m
Explanation:
Range: Range is defined as the horizontal distance of a projectile from the point of projection to the point where the projectile hits the projection plane again. It is measure in meters (m)
R = U²sin2∅/g..................................... Equation 1
Where R = The horizontal distance from the end of the ramp, U = rider's speed, ∅ = the ramp's angle to the horizontal.
<em>Given: U = 6.3 m/s, ∅ = 40°, g = 9.8 m/s²</em>
<em>Substituting these values into equation 1</em>
<em>R = [6.3²sin2(40)]/9.8</em>
<em>R = (39.69×sin80)/9.8</em>
<em>R = 39.69×0.985/9.8</em>
R = 3.989 m
Thus the ramp lands at an horizontal distance of 3.989 m
Answer:
5.38035 m
Explanation:
= Refactive index of water = 1.43
h = Depth = 5.5 m
Critical angle is given by

d = horizontal distance from the post where she no longer see the bottom of wooden post
So,

The distance d is 5.38035 m
The answers would be:
CONVERGENT boundary - Crust submerges into the mantle
TRANSFORM boundary - neither forms nor submerges
DIVERGENT boundary - new crust forms
If you'd like to know more about the different boundaries, read on:
Convergent boundaries occur when two plates move TOWARDS each other. The event where crust submerges into the mantle is called <em><u>subduction</u></em> and this occurs when an oceanic plate and a continental plate collide. The oceanic plate is more dense and thinner than the continental plate, so it slides under it.
Transform boundaries occur when two plates slide against each other. They move slide side by side, so nothing is formed nor do they go under each other. Although, this type of boundaries create strong earthquakes.
Lastly, divergent boundaries occur when two plates move apart. The separation creates a way for magma to come up. New crust is formed when the magma that seeps out is cooled by its cooler surroundings. This is observed in the mid oceanic ridge.
Answer:
Acceleration= final velocity - initial velocity / time
= (15 - 0)/ 5
= 3 m/s^2
Force = mass X acceleration
= 2 X 10^3 X 3
= 6 X 10^3 N