Answer:
165 mm
Explanation:
The mass on the piston will apply a pressure on the oil. This is:
p = f / A
The force is the weight of the mass
f = m * a
Where a in the acceleration of gravity
A is the area of the piston
A = π/4 * D1^2
Then:
p = m * a / (π/4 * D1^2)
The height the oil will raise is the heignt of a colum that would create that same pressure at its base:
p = f / A
The weight of the column is:
f = m * a
The mass of the column is its volume multiplied by its specific gravity
m = V * S
The volume is the base are by the height
V = A * h
Then:
p = A * h * S * a / A
We cancel the areas:
p = h * S * a
Now we equate the pressures form the piston and the pil column:
m * a / (π/4 * D1^2) = h * S * a
We simplify the acceleration of gravity
m / (π/4 * D1^2) = h * S
Rearranging:
h = m / (π/4 * D1^2 * S)
Now, h is the heigth above the interface between the piston and the oil, this is at h1 = 42 mm. The total height is
h2 = h + h1
h2 = h1 + m / (π/4 * D1^2 * S)
h2 = 0.042 + 10 / (π/4 * 0.14^2 * 0.8) = 0.165 m = 165 mm
Answer is your company’s address
Answer:
overflow rate 20.53 m^3/d/m^2
Detention time 2.34 hr
weir loading 114.06 m^3/d/m
Explanation:
calculation for single clarifier



volume of tank



overflow rate =
Detention time
weir loading
Answer:


Explanation:
The distance of the chain would be the product of the dislocation density and the volume of the metal.
Dislocation density = 
Volume of the metal = 



The chain would extend 
Dislocation density = 
Volume of the metal = 


The chain would extend 
Answer:
the difference in pressure between the inside and outside of the droplets is 538 Pa
Explanation:
given data
temperature = 68 °F
average diameter = 200 µm
to find out
what is the difference in pressure between the inside and outside of the droplets
solution
we know here surface tension of carbon tetra chloride at 68 °F is get from table 1.6 physical properties of liquid that is
σ = 2.69 ×
N/m
so average radius =
= 100 µm = 100 ×
m
now here we know relation between pressure difference and surface tension
so we can derive difference pressure as
2π×σ×r = Δp×π×r² .....................1
here r is radius and Δp pressure difference and σ surface tension
Δp =
put here value
Δp =
Δp = 538
so the difference in pressure between the inside and outside of the droplets is 538 Pa