Answer:
Explanation:
a) for shifting reactions,
Kps = ph2 pco2/pcoph20
=[h2] [co2]/[co] [h2o]
h2 + co2 + h2O + co + c3H8 = 1
it implies that
H2 + 0.09 + H2O + 0.08 + 0.05 = 1
solving the system of equation yields
H2 = 0.5308,
H2O = 0.2942
B) according to Le chatelain's principle for a slightly exothermic reaction, an increase in temperature favors the reverse reaction producing less hydrogen. As a result, concentration of hydrogen in the reformation decreases with an increasing temperature.
c) to calculate the maximum hydrogen yield , both reaction must be complete
C3H8 + 3H2O ⇒ 3CO + 7H2( REFORMING)
CO + H2O ⇒ CO2 + H2 ( SHIFTING)
C3H8 + 6H2O ⇒ 3CO2 + 10 H2 ( OVER ALL)
SO,
Maximum hydrogen yield
= 10mol h2/3 molco2 + 10molh2
= 0.77
⇒ 77%
Answer:
skskkdkdkfkgkgkgkkgkgkgigooigigi lol
Explanation:
Oof
Answer:
1) free of contaminants, 2) alkaline, and 3) micro-clustered
Explanation:
Hope it helps you
Answer:
- Moisture/ water content w = 26%
Explanation:
- Initial mass of saturated soil w1 = mass of soil - weight of container
= 113.27 g - 49.31 g = 63.96 g
- Final mass of soil after oven w2 = mass of soil - weight of container
= 100.06 g - 49.31 g = 50.75
Moisture /water content, w =
=
= 0.26 = 26%
Void ratio = water content X specific gravity of solid
= 0.26 X 2.80 =0.728
Answer:
Engineers can design a train with a regenerative braking system
Explanation:
Assuming the point of the question is that the engineers want to focus on using energy efficiently when starting and stopping, they would likely want to consider a regenerative braking system. Such a system can store energy during braking so that it can be used during starting, reducing the amount of energy that must be supplied by an outside power source.