Answer:
Explanation:
I'm not 100% this is what you want, but here it is:
2
3
13
8
11
A
13
Answer:
The governing ratio for thin walled cylinders is 10 if you use the radius. So if you divide the cylinder´s radius by its thickness and your result is more than 10, then you can use the thin walled cylinder stress formulas, in other words:
- if
then you have a thin walled cylinder
or using the diameter:
- if
then you have a thin walled cylinder
Answer:
The Current will decrease by a factor of 2
Explanation:
Given the conditions, it should be noted that the current in the circuit is determined by the LOAD. In other words, the amount of current generator will be producing depends upon the load connected to it.
Now, as the question says, the load is reduced to half its original value, we can write:


Since, P2 = P1/2,

Dividing equations (1) and (2), we get,
P1 / (P1/2) = I1/ I2

Hence, it is proved that the current in the transmission line will decrease by a factor of 2 when load is reduced to half.
Answer:
a)-True
Explanation:
Three point bending is better than tensile for evaluating the strength of ceramics. It is got a positive benefit to tensile for evaluating the strength of ceramics.
Answer:
#include <iostream>
#include <iomanip>
using namespace std;
class pointType
{
public:
pointType()
{
x=0;
y=0;
}
pointType::pointType(double x,double y)
{
this->x = x;
this->y = y;
}
void pointType::setPoint(double x,double y)
{
this->x=x;
this->y=y;
}
void pointType::print()
{
cout<<"("<<x<<","<<y<<")\n";
}
double pointType::getX()
{return x;
}
double pointType::getY()
{return y;
}
private:
double x,y;
};
int main()
{
pointType p2;
double x,y;
cout<<"Enter an x Coordinate for point ";
cin>>x;
cout<<"Enter an y Coordinate for point ";
cin>>y;
p2.setPoint(x,y);
p2.print();
system("pause");
return 0;
}