1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vodomira [7]
3 years ago
11

2. A fluid at 14.7 psi (lb-f per square inch) with kinematic viscosity (????????) 1.8 x10-4 ft2/sec and density(????????) 0.076

lb/ft3 enters a 10 inch diameter pipe with a uniform velocity and a Reynolds number 1000. Determine the decrease in pressure going from the entrance to 100 inch downstream the entrance. The entrance length, LLee is given by, LLee = 0.0288DD. RRRRDD. (Hint: calculate the pressure drop separately between 1 and 2 and between 2 and 3 because the region 1-2 shows developing flow and region 2-3 shows developed flow) region. The flow becomes fully developed after the entrance length, LLee. The thickness of the boundary layer 1 −� given as ????????(xx) = 5.0xxRRRR 2. Show that entrance length for this flow can be expressed LL = 0.01DD. RRRR . xxeeDD

Engineering
1 answer:
jenyasd209 [6]3 years ago
4 0

Answer:

See explaination

Explanation:

We are going to define Pressure drop as the difference in total pressure between two points of a fluid carrying network. A pressure drop usually occurs when frictional forces, caused by the resistance to flow, act on a fluid as it flows through the tube.

See attachment for the step by step solution of the given problem.

You might be interested in
Vital role of maritime english among seaferers
seropon [69]

Answer:

uehgeg7djw7heidiisosowiuisiejei2k

8 0
3 years ago
A solid circular rod that is 600 mm long and 20 mm in diameter is subjected to an axial force of P = 50 kN The elongation of the
Kay [80]

Answer:

a) V = 0.354

b)  G = 25.34 GPA

Explanation:

Solution:

We first determine Modulus of Elasticity and Modulus of rigidity

Elongation of rod ΔL = 1.4 mm

Normal stress, δ = P/A

Where P = Force acting on the cross-section

A = Area of the cross-section

Using Area, A = π/4 · d²

= π/4 · (0.0020)²  = 3.14 × 10⁻⁴m²

δ = 50/3.14 × 10⁻⁴    = 159.155 MPA

E(long) = Δl/l  = 1.4/600 = 2.33 × 10⁻³mm/mm

Modulus of Elasticity Е = δ/ε

= 159.155 × 10⁶/2.33 × 10⁻³    = 68.306 GPA

Also final diameter d(f) = 19.9837 mm

Initial diameter d(i) = 20 mm

Poisson said that V = Е(elasticity)/Е(long)

= -  <u>( 19.9837 - 20 /20)</u>

        2.33 × 10⁻³                  

= 0.354,

∴ v = 0.354

Also G = Е/2. (1+V)

=  68.306 × 10⁹/ 2.(1+ 0.354)

= 25.34 GPA

⇒ G = 25.34 GPA

5 0
3 years ago
For the unity negative feedback system G(s) = K(s+6)/ (s + 1)(s + 2)(s + 5) It's known that the system is operating with a domin
Ad libitum [116K]

Answer:The awnser is 5

Explanation:Just divide all of it

4 0
3 years ago
Water flows steadily through the pipe as shown below, such that the pressure at section (1) and at section (2) are 300 kPa and 1
steposvetlana [31]

Answer:

The velocity at section is approximately 42.2 m/s

Explanation:

For the water flowing through the pipe, we have;

The pressure at section (1), P₁ = 300 kPa

The pressure at section (2), P₂ = 100 kPa

The diameter at section (1), D₁ = 0.1 m

The height of section (1) above section (2), D₂ = 50 m

The velocity at section (1), v₁ = 20 m/s

Let 'v₂' represent the velocity at section (2)

According to Bernoulli's equation, we have;

z_1 + \dfrac{P_1}{\rho \cdot g} + \dfrac{v^2_1}{2 \cdot g} = z_2 + \dfrac{P_2}{\rho \cdot g} + \dfrac{v^2_2}{2 \cdot g}

Where;

ρ = The density of water = 997 kg/m³

g = The acceleration due to gravity = 9.8 m/s²

z₁ = 50 m

z₂ = The reference = 0 m

By plugging in the values, we have;

50 \, m + \dfrac{300 \ kPa}{997 \, kg/m^3 \times 9.8 \, m/s^2} + \dfrac{(20 \, m/s)^2}{2 \times 9.8 \, m/s^2} = \dfrac{100 \ kPa}{997 \, kg/m^3 \times 9.8 \, m/s^2} + \dfrac{v_2^2}{2 \times 9.8 \, m/s^2}50 m + 30.704358 m + 20.4081633 m = 10.234786 m + \dfrac{v_2^2}{2 \times 9.8 \, m/s^2}

50 m + 30.704358 m + 20.4081633 m - 10.234786 m = \dfrac{v_2^2}{2 \times 9.8 \, m/s^2}

90.8777353 m = \dfrac{v_2^2}{2 \times 9.8 \, m/s^2}

v₂² = 2 × 9.8 m/s² × 90.8777353 m

v₂² = 1,781.20361 m²/s²

v₂ = √(1,781.20361 m²/s²) ≈ 42.204308 m/s

The velocity at section (2), v₂ ≈ 42.2 m/s

3 0
2 years ago
A cruise missile under test is moving horizontally at Ma =2 in the atmosphere at an elevation of 2000 m (Air temperature is 2 °C
telo118 [61]

Answer: the half-angle "alpha" of the Mach cone = 30⁰

Explanation:

To calculate the  half-angle "alpha" of the Mach cone.

we say ;

Sin∝ = 1 / Ma

given that Ma = 2

now we substitute

Sin∝ = 1 / 2

Sin∝ = 0.5

∝ = Sin⁻¹ 0.5

∝ = 30⁰

Therefore, the half-angle "alpha" of the Mach cone is 30⁰

3 0
3 years ago
Other questions:
  • Thermal energy storage systems commonly involve a packed bed of solid spheres, through which a hot gas flows if the system is be
    13·1 answer
  • Use the orange points (square symbol) to plot the initial short-run industry supply curve when there are 20 firms in the market.
    5·1 answer
  • A square power screw has a mean diameter of 30 mm and a pitch of 4 mm with single thread. The collar diameter can be assumed to
    14·1 answer
  • An aircraft is in a steady level turn at a flight speed of 200 ft/s and a turn rate about the local vertical of 5 deg/s. Thrust
    8·1 answer
  • Shear modulus is analogous to what material property that is determined in tensile testing? (a)- Percent reduction of area (b) Y
    11·1 answer
  • Determine the reactor volume (assume a CSTR activated sludge aerobic reactor at steady state) required to treat 5 MGD of domesti
    5·1 answer
  • Identify the different engineering activities/steps in the engineering design process for each steps,summarize in 1–3 sentences
    13·1 answer
  • What was a campaign belief in the 1980 presidential election? Carter called for a stronger national defense. Carter promised to
    7·2 answers
  • Please read and an<br><br> 3. Many Jacks use hydraullc power.<br> A) O True<br> B) O False
    13·1 answer
  • Given : f(x) = x³- 7x²+ 36 Draw the graph of f neatly on F graph paper. Clearly indicate an Intercepts and coordinates of turnin
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!