Answer:
Explanation:
Given that,
Weight of jet
W = 2.25 × 10^6 N
It is at rest on the run way.
Two rear wheels are 16m behind the front wheel
Center of gravity of plane 10.6m behind the front wheel
A. Normal force entered on the ground by front wheel.
Taking moment about the the about the real wheel.
Check attachment for better understanding
So,
Clock wise moment = anti-clockwise moment
W × 5.4 = N × 16
2.25 × 10^6 × 5.4 = 16•N
N = 2.25 × 10^6 × 5.4 / 16
N = 7.594 × 10^5 N
B. Normal force on each of the rear two wheels.
Using the second principle of equilibrium body.
Let the rear wheel normal be Nr and note, the are two real wheels, then, there will be two normal forces
ΣFy = 0
Nr + Nr + N — W = 0
2•Nr = W—N
2•Nr = 2.25 × 10^6 — 7.594 × 10^5
2•Nr = 1.491 × 10^6
Nr = 1.491 × 10^6 / 2
Nr = 7.453 × 10^5 N
Let F1=Force exerted by the brother (+F1)
F1= Force exerted by the sister (-F2)
Fnet=(+F1) + (-F2)
Fnet= (+F1) + (-F2)
Fnet=F1 - F2
Fnet= (+3N)+(-5N)
Fnet= -2N
-F
towards the sister (-F) (greater force applied)
Answer:

Explanation:
<u>Capacitance</u>
A two parallel-plate capacitor has a capacitance of

where

A = area of the plates = 
d = separation of the plates

We need to compute C. We'll use the circuit parameters for that. The reactance of a capacitor is given by

where w is the angular frequency

Solving for C

The reactance can be found knowing the total impedance of the circuit:

Where R is the resistance,
. Solving for Xc

The magnitude of the impedance is computed as the ratio of the rms voltage and rms current

The rms current is the peak current Ip divided by
, thus


Now collect formulas

Or, equivalently



The capacitance is now

The radius of the plates is

The separation between the plates is



Answer:
Yes, yes it would since we need light
Explanation:
The answer would be c because it is talking about she wants to be in a good neighborhood