Answer:
Both Technician A and Technician B
Explanation:
In order to gain a better understanding of the solution above let define some terms
Break Accumulator
We can define a break accumulator as storage that that helps generate the required pressure in order for the breaking system to respond faster this accumulator is charged by turning the steering wheel slowly at once from lock to lock now this build the pressure in the accumulator and one way to depressurize is it is by turning the ignition switch ""off""
Now a scan tool is a device that can interface with a car it can also be used to diagnose a car an get the diagnostic information to help in the cars diagnoses and also be used to reprogram a car
The potential across the capacitor at t = 1.0 seconds, 5.0 seconds, 20.0 seconds respectively is mathematically given as
- t=0.476v
- t=1.967v
- V2=4.323v
<h3>What is the potential across the capacitor?</h3>
Question Parameters:
A 1. 0 μf capacitor is being charged by a 9. 0 v battery through a 10 mω resistor.
at
- t = 1.0 seconds
- 5.0 seconds
- 20.0 seconds.
Generally, the equation for the Voltage is mathematically given as
v(t)=Vmax=(i-e^{-t/t})
Therefore
For t=1
V=5(i-e^{-1/10})
t=0.476v
For t=5s
V2=5(i-e^{-5/10})
t=1.967
For t=20s
V2=5(i-e^{-20/10})
V2=4.323v
Therefore, the values of voltages at the various times are
- t=0.476v
- t=1.967v
- V2=4.323v
Read more about Voltage
brainly.com/question/14883923
Complete Question
A 1.0 μF capacitor is being charged by a 5.0 V battery through a 10 MΩ resistor.
Determine the potential across the capacitor when t = 1.0 seconds, 5.0 seconds, 20.0 seconds.
Answer:
m = 35.98 Kg ≈ 36 Kg
Explanation:
I₀ = 125 kg·m²
R₁ = 1.50 m
ωi = 0.600 rad/s
R₂ = 0.905 m
ωf = 0.800 rad/s
m = ?
We can apply The law of conservation of angular momentum as follows:
Linitial = Lfinal
⇒ Ii*ωi = If*ωf <em>(I)</em>
where
Ii = I₀ + m*R₁² = 125 + m*(1.50)² = 125 + 2.25*m
If = I₀ + m*R₂² = 125 + m*(0.905)² = 125 + 0.819025*m
Now, we using the equation <em>(I) </em>we have
(125 + 2.25*m)*0.600 = (125 + 0.819025*m)*0.800
⇒ m = 35.98 Kg ≈ 36 Kg
Answer:
434 Hz
Explanation:
According to the Doppler effect, when a source of a wave is moving towards an observer at rest, then the observer will observe an apparent frequency which is higher than the original frequency of the source.
In this situation, Tina is driving towards Rita. Tina is the source of the sound wave (the horn), while RIta is the observer. Since the original frequency of the sound is 400 Hz, Rita will hear a sound with a frequency higher than this value.
The only choice which is higher than 400 Hz is 434 Hz, so this is the frequency that Rita will hear.