<h3>
![\tt Kc=\dfrac{[CO_2]}{[C][O_2]}](https://tex.z-dn.net/?f=%5Ctt%20Kc%3D%5Cdfrac%7B%5BCO_2%5D%7D%7B%5BC%5D%5BO_2%5D%7D)
</h3><h3>Further explanation</h3>
Given
Reaction
C+02 = CO2
Required
The equilibrium constant
Solution
The equilibrium constant is the ratio of concentration or pressure between the product and the reactant with each reaction coefficient raised
The equilibrium constant is based on the concentration (Kc) in a reaction
pA + qB -----> mC + nD
![\large {\boxed {\bold {Kc ~ = ~ \frac {[C] ^ m [D] ^ n} {[A] ^ p [B] ^ q}}}}](https://tex.z-dn.net/?f=%5Clarge%20%7B%5Cboxed%20%7B%5Cbold%20%7BKc%20~%20%3D%20~%20%5Cfrac%20%7B%5BC%5D%20%5E%20m%20%5BD%5D%20%5E%20n%7D%20%7B%5BA%5D%20%5E%20p%20%5BB%5D%20%5E%20q%7D%7D%7D%7D)
So for the reaction :
C+O₂ ⇔ CO₂
![\tt Kc=\dfrac{[CO_2]}{[C][O_2]}](https://tex.z-dn.net/?f=%5Ctt%20Kc%3D%5Cdfrac%7B%5BCO_2%5D%7D%7B%5BC%5D%5BO_2%5D%7D)
Answer:
they are equal
Explanation:
the Law of Conservation of Mass states that for any system closed to all transfers of matter and energy, the mass of the system must remain constant over time, as the system's mass cannot change
Answer:
Across a period, effective nuclear charge increases as electron shielding remains constant. A higher effective nuclear charge causes greater attractions to the electrons, pulling the electron cloud closer to the nucleus which results in a smaller atomic radius. ... This results in a larger atomic radius.
Explanation:
Now lets d8
The average atomic mass of Sn is 118.71 g/mol
the percentage of heaviest Sn is 5.80%
the given mass of Sn is 82g
The total moles of Sn will be = mass / atomic mass = 82/118.71=0.691
Total atoms of Sn in 82g = 
the percentage of heaviest Sn is 5.80%
So the total atoms of
= 5.80% X 
Total atoms of
=
atoms
the mass of
will be = 