Answer:

Explanation:
Hello!
In this case, according to the gas laws, we would be able to assume HCl can be modeled as an ideal gas for this calculation purpose; in such a way, we use the following equation to compute the temperature:

In such a way, we plug in moles, volume and pressure to obtain:

Best regards!
The exception to an octet of electrons would be the first noble gas, Helium, which only has two valence electrons. This primary affects the element hydrogen, which forms stable compounds by achieving two valence electrons.
Answer:
The empirical formula is =
Explanation:
Given that:- Mass of nickel = 2.241 g
Mass of the oxide formed = 2.852 g
Mass of the oxygen reacted = Mass of the oxide formed - Mass of nickel = 2.852 g - 2.241 g = 0.611 g
Molar mass of nickel = 58.6934 g/mol
Moles of nickel =
= 0.03818 mol
Molar mass of oxygen = 15.999 g/mol
Moles of nickel =
= 0.03818 mol
Taking the simplest ratio for Ni and O as:
0.03818 : 0.03818 = 1 : 1
<u>The empirical formula is =
</u>
Answer:
3.) 51.7 L
Explanation:
To find the volume, you need to use the Ideal Gas Law:
PV = nRT
In the equation,
-----> P = pressure (kPa)
-----> V = volume (L)
-----> n = moles
-----> R = Ideal Gas constant (8.314 kPa*L/mol*K)
-----> T = temperature (K)
First, you need to convert the temperature from Celsius to Kelvin. Then, you can plug the given values into the equation and simplify to find "V".
P = 68.0 kPa R = 8.314 kPa*L/mol*K
V = ? L T = 27.00 °C + 273 = 300 K
n = 1.41 moles
PV = nRT <----- Ideal Gas Law
(68.0 kPa)V = (1.41 moles)(8.314 kPa*L/mol*K)(300 K) <----- Insert values
(68.0 kPa)V = 3516.822 <----- Multiply right side
V = 51.7 <----- Divide both sides by 68.0
Explanation:
Transfer of mass A into stagnant film B depends on the availability of driving force.
Whereas driving force is the pressure difference at the surface of A and the bulk.
As, 

Therefore, putting the given values into the above formula as follows.

= 
= 0.132 
Thus, we can conclude that the flux of A from a surface into a mixture of A and B is 0.132 