Answer:
second law of thermodynamics.
Explanation:
The second law of thermodynamics deals with interconversion of energy from one form to another. Although energy can be converted from one form to another, this conversion is never 100% efficient because energy is lost in certain ways such as through heat. In a combustion engine, it is not possible to recover the energy from the gasoline 100% since energy must be lost along the way via such means as heat losses. Hence I will be skeptical about such an advert.
<span>The products of the light-dependent reactions are used to help 'fuel' the light-independent reactions.
</span><span>Example:
NADPH and ATP are produced during the light-dependent reaction for use in the light-independent reaction (the Calvin Cycle). </span>
Answer:
3.62x10⁻⁷ = Kb
Explanation:
The acid equilibrium of a weak acid, HX, is:
HX + H₂O ⇄ X⁻ + H₃O⁺
Where Ka = [X⁻] [H₃O⁺] / [HX]
And basic equilibrium of the conjugate base, is:
X⁻ + H₂O ⇄ OH⁻ + HX
Where Kb = [OH⁻] [HX] / [X⁻]
To convert Ka to Kb we must use water equilibrium:
2H₂O ⇄ H₃O⁺ + OH⁻
Where Kw = 1x10⁻¹⁴ = [OH⁻] [H₃O⁺]
Thus, we can obtain:
Kw = Ka*Kb
Solving for Kb:
Kw / Ka = Kb
1x10⁻¹⁴ / 2.76x10⁻⁸ =
3.62x10⁻⁷ = Kb
Answer:
The electronegativity from order of least to highest is:
Ne, Ca, Fe, F
Explanation:
Elements in the periodic table have been arranged based on their level of electronegativity (which is the ability of an atom to attract electrons).
According to Paulings scale of rating elements based on their electronegativity, the electronegativity value of Fe, Ca, Ne, and F are 1.83, 1, 0 and 3.98 respectively.
Hence, based on Pauling scale, the order of electronegativity from least to highest is:
Ne > Ca > Fe > F