intensity is the answer. i just got it on the test
Answer:
smaller acceleration, so lower change in velocity
Explanation:
To answer this question we examine the equation that relates mass with force and with acceleration:
.
Since we want to know what happens to the acceleration, we solve for it in the equation: 
Notice that we are asked what happens when the force applied is the same, but now it is applied in an object with more mass (M).
We therefore would have to compare our initial form:
with the new one:
wher the denominator is a larger quantity, therefore making our division/quotient smaller. Then, we conclude that the acceleration will be smaller, and therefore the change in velocity of the object will be lower.
Answer:
1.832 kgm^2
Explanation:
mass of potter's wheel, M = 7 kg
radius of wheel, R = 0.65 m
mass of clay, m = 2.1 kg
distance of clay from centre, r = 0.41 m
Moment of inertia = Moment of inertia of disc + moment f inertia of the clay
I = 1/2 MR^2 + mr^2
I = 0.5 x 7 x 0.65 x 0.65 + 2.1 x 0.41 x 0.41
I = 1.47875 + 0.353
I = 1.832 kgm^2
Thus, the moment of inertia is 1.832 kgm^2.
The answer is B
I used these equations then i putted it together.
Charge = number of ( electron or proton ) x charge of ( electron or proton )
Force = k x (q1 q2)/r²