Answer:
3 electrons from nitrogen and 3 from carbon while carbon already has a lone pair along with a negative charge (called cyanide)
The train is accelerating meaning there is a change in the velocity so the speed is either increasing or decreasing depending. The bicycle is travelling at a constant velocity meaning it is travelling at a constant speed.
Answer:
Protons and electrons are charged particles. Neutrons have no charge.
Answer:
Velocity = 3.25[m/s]
Explanation:
This problem can be solved if we use the Bernoulli equation: In the attached image we can see the conditions of the water inside the container.
In point 1, (surface of the water) we have the atmospheric pressure and at point 2 the water is coming out also at atmospheric pressure, therefore this members in the Bernoulli equation could be cancelled.
The velocity in the point 1 is zero because we have this conditional statement "The water surface drops very slowly and its speed is approximately zero"
h2 is located at point 2 and it will be zero.
![(P_{1} +\frac{v_{1}^{2} }{2g} +h_{1} )=(P_{2} +\frac{v_{2}^{2} }{2g} +h_{2} )\\P_{1} =P_{2} \\v_{1}=0\\h_{2} =0\\v_{2}=\sqrt{0.54*9.81*2}\\v_{2}=3.25[m/s]](https://tex.z-dn.net/?f=%28P_%7B1%7D%20%2B%5Cfrac%7Bv_%7B1%7D%5E%7B2%7D%20%7D%7B2g%7D%20%2Bh_%7B1%7D%20%29%3D%28P_%7B2%7D%20%2B%5Cfrac%7Bv_%7B2%7D%5E%7B2%7D%20%7D%7B2g%7D%20%2Bh_%7B2%7D%20%29%5C%5CP_%7B1%7D%20%3DP_%7B2%7D%20%5C%5Cv_%7B1%7D%3D0%5C%5Ch_%7B2%7D%20%3D0%5C%5Cv_%7B2%7D%3D%5Csqrt%7B0.54%2A9.81%2A2%7D%5C%5Cv_%7B2%7D%3D3.25%5Bm%2Fs%5D)
Answer:
The moment of inertia about an axis through the center and perpendicular to the plane of the square is

Explanation:
From the question we are told that
The length of one side of the square is 
The total mass of the square is 
Generally the mass of one size of the square is mathematically evaluated as

Generally the moment of inertia of one side of the square is mathematically represented as

Generally given that
it means that this moment inertia evaluated above apply to every side of the square
Now substituting for 
So

Now according to parallel-axis theorem the moment of inertia of one side of the square about an axis through the center and perpendicular to the plane of the square is mathematically represented as
![I_a = I_g + m [\frac{q}{2} ]^2](https://tex.z-dn.net/?f=I_a%20%3D%20%20I_g%20%2B%20m%20%5B%5Cfrac%7Bq%7D%7B2%7D%20%5D%5E2)
=> ![I_a = I_g + {\frac{M}{4} }* [\frac{q}{2} ]^2](https://tex.z-dn.net/?f=I_a%20%3D%20%20I_g%20%2B%20%7B%5Cfrac%7BM%7D%7B4%7D%20%7D%2A%20%5B%5Cfrac%7Bq%7D%7B2%7D%20%5D%5E2)
substituting for 
=> ![I_a = \frac{1}{12} * \frac{M}{4} * a^2 + {\frac{M}{4} }* [\frac{q}{2} ]^2](https://tex.z-dn.net/?f=I_a%20%3D%20%20%5Cfrac%7B1%7D%7B12%7D%20%20%2A%20%20%5Cfrac%7BM%7D%7B4%7D%20%2A%20a%5E2%20%2B%20%7B%5Cfrac%7BM%7D%7B4%7D%20%7D%2A%20%5B%5Cfrac%7Bq%7D%7B2%7D%20%5D%5E2)
=> 
=> 
Generally the moment of inertia of the square about an axis through the center and perpendicular to the plane of the square is mathematically represented as

=> 
=> 