First the plane turns 100 km North, and than 200 km East. Since both the directions are perpendicular to each other, therefore we can apply the Pythagoras theorem to calculate the distance between the destination and the point where plane took off
=100^{2}+200^{2}
D=223.60 km=224 km
Therefore, The destination is 224 km from where the plane took off
I believe it is called centripetal force <span />
Answer:
Armando's weight ,restored force created by the trampoline
a harmonic movement within the trampoline
Explanation:
In a trampoline we have two forces that actuate Armando's weight and the restored force created by the trampoline that depends on the deformation distance of the elastic canvas.
Amando's weight is vertical and directed towards the center of the Earth and has a constant value, this weight is balanced with the elastic force the springboard exerts on Armando in a vertical direction.
In general, when entering the trampoline, a small jump is made, this creates a speed that deforms the canvas until the speed is reduced to zero, at this point the elastic force is greater than the weight and the boy begins to climb, After the boy leaves the canvas he meets only the force of gravity and his speed decreases to zero and begins his fall.
In Summary Armando is in a harmonic movement within the trampoline
ANSWER

EXPLANATION
Parameters given:
Mass of the student, M = 70 kg
Mass of the textbook, m = 1 kg
Distance, r = 1 m
To find the gravitational force acting between the student and the textbook, apply the formula for gravitational force:

where G = gravitational constant
Therefore, the gravitational force acting between the student and the textbook is:

That is the answer.
V (speed) = F (frequency) x Wavelength
If we rearrange the formula, making frequency the subject;
F (frequency) = Speed ÷ Wavelength
F = 300,000 m\s x 4.5 e -10m
F = 0.08810409956 Hz