The decreasing order of wavelengths of the photons emitted or absorbed by the H atom is : b → c → a → d
Rydberg's formula :
,
where λ is the wavelength of the photon emitted or absorbed from an H atom electron transition from
to
and
= 109677 is the Rydberg Constant. Here
and
represents the transitions.
(a)
=2 to
= infinity
= 109677/4 [since 1/infinity = 0] Therefore,
= 4 / 109677 = 0.00003647 m
(b)
=4 to
= 20
= 6580.62
Therefore,
= 1 / 6580.62 = 0.000152 m
(c)
=3 to
= 10
= 11089.56
Therefore,
= 1 / 11089.56 = 0.00009 m
(d)
=2 to
= 1
= - 82257.75
Therefore,
= 1 /82257.75 = - 0.0000121 m
[Even though there is a negative sign, the magnitude is only considered because the sign denotes that energy is emitted.]
So the decreasing order of wavelength of the photon absorbed or emitted is b → c → a → d.
Learn more about the Rydberg's formula athttps://brainly.com/question/14649374
#SPJ4
Answer: A, C, E
Explanation: PLATO. all testable questions.
Answer:
60 g/100 g water
Explanation:
Find 5 °C on the horizontal axis.
Draw a line vertically from that point until you reach the solubility curve for CaCl₂.
Then draw a horizontal line from there to the vertical axis.
The solubility of CaCl₂ is 60 g/100 g water.
Answer is: the approximate freezing point of a 0.10 m NaCl solution is -2x°C.
V<span>an't
Hoff factor (i) for NaCl solution is approximately 2.
</span>Van't Hoff factor (i) for glucose solution is 1.<span>
Change in freezing point from pure solvent to
solution: ΔT = i · Kf · m.
Kf - molal freezing-point depression constant for water is 1,86°C/m.
m - molality, moles of solute per
kilogram of solvent.
</span>Kf and molality for this two solutions are the same, but Van't Hoff factor for sodium chloride is twice bigger, so freezing point is twice bigger.
Density is simply the ratio of mass over volume. In this
case, the volume of the rock is the difference of after and before it was
dropped into the cylinder.
volume = 19.73 mL – 13.31 mL = 6.42 mL
density = 28.63 g / 6.42 mL
<span>density = 4.46 g/mL</span>