I think the Ksp for Calcium Carbonate is around 5×10⁻⁹
(I don't know if this is the Ksp value that you use because I read somewhere that this value can vary. You should probably check with your teacher with what Ksp value they want you to use)
the equation for the dissociation CaCO₃ in water is CaCO₃(s)⇄Ca²⁺(aq)+CO₃²⁻(aq) which means that the concentration of Ca²⁺ is equal to the concentration of CO₃²⁻ in solution. For every molecule of CaCO₃ that dissolves, one atom of Ca²⁺ and one molecule of CO₃²⁻ is put into solution which is why the concentrations are equal in solution.
Since Ksp=[Ca²⁺][CO₃²⁻] and we know that [Ca²⁺]=[CO₃²⁻] we can rewrite the equation as Ksp=x² since if you say that [Ca²⁺]=[CO₃²⁻] when you multiply them together you get the concentration squared (I am calling the concentration x for right now).
when solving for x:
5×10⁻⁹=x²
x=0.0000707
Therefore [Ca²⁺]=[CO₃²⁻]=0.0000707mol/L which also shows how much calcium carbonate is dissolved per liter of water since the amount of Ca²⁺ and CO₃²⁻ in solution came from the calcium in a 1 to 1 molar ratio as shown in the equation (the value we found for x is the molar solubility of calcium carbonate).
Using the fact that the molar mass of calcium carbonate is 100.09g/mol you can use dimensional analysis as fallows:
(0.0000707mol/L)(100.09g/mol)=0.007077g/L
That means that there is 0.007077g of Calcium carbonate that can precipitate out of 1L of water.
since the question is asking for how much water needs to be evaporated to precipitate 100mg (0.1g) of Calcium you have to do the fallowing calculation:
(0.1g)/(0.007077g/L)=14.13L of water.
14.13L of water needs to evaporate in order to precipitate out 100mg of calcium carbonate
These types of questions can get long and confusing so I bolded parts that were important to try to guide you through it more easily.
I hope this helps. Let me know if anything is unclear.
Answer:
- 602 mg of CO₂ and 94.8 mg of H₂O
Explanation:
The<em> yield</em> is measured by the amount of each product produced by the reaction.
The chemical formula of <em>fluorene</em> is C₁₃H₁₀, and its molar mass is 166.223 g/mol.
The <em>oxidation</em>, also know as combustion, of this hydrocarbon is represented by the following balanced chemical equation:
To calculate the yield follow these steps:
<u>1. Mole ratio</u>
<u />
<u>2. Convert 175mg of fluorene to number of moles</u>
- Number of moles = mass in grams / molar mass
<u>3. Set a proportion for each product of the reaction</u>
a) <u>For CO₂</u>
i) number of moles
ii) mass in grams
The molar mass of CO₂ is 44.01g/mol
- mass = number of moles × molar mass
- mass = 0.013686 moles × 44.01 g/mol = 0.602 g = 602mg
b) <u>For H₂O</u>
i) number of moles
ii) mass in grams
The molar mass of H₂O is 18.015g/mol
- mass = number of moles × molar mass
- mass = 0.00526 moles × 18.015 g/mol = 0.0948mg = 94.8 mg
A & C.
much debated nuclear power plants uses nuclear fission power stations, with uranium-235 as the source if fission. It is "non-renewable" according to the Energy Information Administration.
burning wood is also a non-renewable energy source
16(2)/74.1=.431
.431x100= 43.1%