Answer:
1.13×10^25 molecules of water.
Explanation:
Equation of the reaction;
C8H18(g) + 25/2 O2 (g) -------> 8CO2(g) + 9H2O(l)
It is important to first put down the balanced reaction equation. It is not possible to solve any problem on stoichiometric relationship without a balanced reaction equation. Once the equation is obtained, we can now proceed with other steps in the solution of the problem.
From the reaction equation, 1 mole of C8H18 produces 9 moles of water
1 mole of C8H18 occupies 22.4L volume while 1 mole of water contains 6.02×10^23 molecules of water
Hence
22.4 L of C8H18 produces 9(6.02×10^23) molecules of water
46.72 L of C8H18 will produce 46.72 L × 9(6.02×10^23) molecules of water/22.4 L
= 113×10^23 or 1.13×10^25 molecules of water.
Answer:
Any Alkali Earth Metal - Group 2A aka Group 16 or polyatomic cation with a 2+ charge
<em>Calculate the pH of the following substances formed during a volcanic eruption:
</em>
<em>• Acid rain if the [H +] is 1.9 x 10-5
</em>
<em>• Sulfurous acid if [H +] = 0.10
</em>
<em>• Nitric acid if [H +] = 0.11</em>
<em />
<h3>Further explanation </h3>
pH is the degree of acidity of a solution that depends on the concentration of H⁺ ions. The greater the value the more acidic the solution and the smaller the pH.
pH = - log [H⁺]
![\tt pH=-log[1.9\times 10^{-5}]\\\\pH=5-log1.9\\\\pH=4.72](https://tex.z-dn.net/?f=%5Ctt%20pH%3D-log%5B1.9%5Ctimes%2010%5E%7B-5%7D%5D%5C%5C%5C%5CpH%3D5-log1.9%5C%5C%5C%5CpH%3D4.72)
![\tt pH=-log[10^{-1}]\\\\pH=1](https://tex.z-dn.net/?f=%5Ctt%20pH%3D-log%5B10%5E%7B-1%7D%5D%5C%5C%5C%5CpH%3D1)
![\tt pH=-log[11\times 10^{-2}]\\\\pH=2-log~11=0.959](https://tex.z-dn.net/?f=%5Ctt%20pH%3D-log%5B11%5Ctimes%2010%5E%7B-2%7D%5D%5C%5C%5C%5CpH%3D2-log~11%3D0.959)
Answer:
It depends
(plum will spoil more quickly at warm temperatures)
Explanation: