Answer:
The angle that the wave would be 
Explanation:
From the question we are told that the opening to the harbor acts just like a single-slit so a boat in the harbor that at angle equal to the second diffraction minimum would be safe and the on at angle greater than the diffraction first minimum would be slightly affected
The minimum is as a result of destructive interference
And for single-slit this is mathematically represented as

where D is the slit with
is the angle relative to the original direction of the wave
m is the order of the minimum j
is the wavelength
Now since in the question we are told to obtain the largest angle at which the boat would be safe
And the both is safe at the angle equal to the second minimum then
The the angle is evaluated as
![\theta = sin ^{-1}[\frac{m\lambda}{D} ]](https://tex.z-dn.net/?f=%5Ctheta%20%3D%20sin%20%5E%7B-1%7D%5B%5Cfrac%7Bm%5Clambda%7D%7BD%7D%20%5D)
Since for second minimum m= 2
The equation becomes

Explanation:
Dark Energy. Dark Energy is a hypothetical form of energy that exerts a negative, repulsive pressure, behaving like the opposite of gravity. It has been hypothesised to account for the observational properties of distant type Ia supernovae, which show the universe going through an accelerated period of expansion
It goes sun moon earth the moon is blocking us from seeing the sun.
The forces acting on your mom while cooking is Air resistance and the force of friction
<u>Explanation:</u>
<u>1. Air resistance:</u>
- In simple words, Air resistance can be stated as the type of friction between the air and the other materials.
- In this scenario, there will be an air resistance and the air hits the mom while cooking via the doors or windows
<u>2. The force of friction:</u>
- In simple words, friction can be stated as, the resistance that one surface or object encounters when moving over another.
- While cooking the food mom would experience the friction since friction is the transfer of heat, and cooking is the process of receiving that heat.
Answer:
2.2 s
Explanation:
Using the equation for the period of a physical pendulum, T = 2π√(I/mgh) where I = moment of inertia of leg about perpendicular axis at one point = mL²/3 where m = mass of man = 67 kg and L = height of man = 1.83 m, g = acceleration due to gravity = 9.8 m/s² and h = distance of leg from center of gravity of man = L/2 (center of gravity of a cylinder)
So, T = 2π√(I/mgh)
T = 2π√(mL²/3 /mgL/2)
T = 2π√(2L/3g)
substituting the values of the variables into the equation, we have
T = 2π√(2L/3g)
T = 2π√(2 × 1.83 m/(3 × 9.8 m/s² ))
T = 2π√(3.66 m/(29.4 m/s² ))
T = 2π√(0.1245 s² ))
T = 2π(0.353 s)
T = 2.22 s
T ≅ 2.2 s
So, the period of the man's leg is 2.2 s