Here we will the speed of seagull which is v = 9 m/s
this is the speed of seagull when there is no effect of wind on it
now in part a)
if effect of wind is in opposite direction then it travels 6 km in 20 min
so the average speed is given by the ratio of total distance and total time


now since effect of wind is in opposite direction then we can say



Part b)
now if bird travels in the same direction of wind then we will have


now we can find the time to go back



Part c)
Total time of round trip when wind is present


now when there is no wind total time is given by


So due to wind time will be more
Black hole, it sucks in pretty much everything in its path
I believe this would be an example of Mary's velocity. We have her speed and direction which is all you need to find velocity.
Define an x-y coordinate system such that
The positive x-axis = the eastern direction, with unit vector

.
The positive y-axis = the northern direction, with unit vector

.
The airplane flies at 340 km/h at 12° east of north. Its velocity vector is

The wind blows at 40 km/h in the direction 34° south of east. Its velocity vector is
![\vec{v}_{2} =40(cos(34^{o})\hat{i} - sin(24^{o})]\hat{j}) = 33.1615\hat{i} -22.3677\hat{j})](https://tex.z-dn.net/?f=%5Cvec%7Bv%7D_%7B2%7D%20%3D40%28cos%2834%5E%7Bo%7D%29%5Chat%7Bi%7D%20-%20sin%2824%5E%7Bo%7D%29%5D%5Chat%7Bj%7D%29%20%3D%2033.1615%5Chat%7Bi%7D%20-22.3677%5Chat%7Bj%7D%29)
The plane's actual velocity is the vector sum of the two velocities. It is

The magnitude of the actual velocity is
v = √(121.1615² + 306.0473²) = 329.158 km/h
The angle that the velocity makes north of east is
tan⁻¹ (306.04733/121.1615) = 21.6°
Answer:
The actual velocity is 329.2 km/h at 21.6° north of east.