Answer:
B as distance increase force decrease, but it is not a linear relationship.
According to x-ray observations, the space between galaxies in a galaxy cluster is very hot. It is because the matter between galaxies (often called the intergalactic medium) is mostly hot, ionized hydrogen with bits of heavier elements such as carbon, oxygen and silicon thrown in.
Massive structures are collapsing than at earlier times. Large collapsing structures lead to higher velocity intergalactic shocks and, as a result, significant intergalactic shock heating, with some gas heated well above the
K temperatures.
Heating also occurs as galaxies expel out most of the gas that fell into them. The final product is a warm/hot phase, with temperatures of >
K.
Now, Let's know how do you use X-rays to make space observations?
X-radiation is absorbed by the Earth's atmosphere, so instruments to detect X-rays must be taken to high altitude by balloons, sounding rockets, and satellites.
To learn more about Galaxy Cluster, here
brainly.com/question/16557484
#SPJ4
Answer:
The particles will more likely to move faster since they are converted from a liquid to gas.
Rules for States of Matter:
1. Solid particles always are packed close together and don't have much space to move.
2. Liquid particles have space to move around but are still packed together, but not as close as solid.
3. Gas particles are moving freely, in fact they are in the air! Gas particles are free to move wherever. For example, the air has gas particles that are constantly bumping into each other.
Let me know if I am right =)
Data:

n (Wave node)
V (Wave belly)
L (Wave length)
<span>The number of bells is equal to the number of the harmonic emitted by the string.
</span>

Wire 2 → 2º Harmonic → n = 2







Wire 1 → 1º Harmonic or Fundamental rope → n = 1



If, We have:
V = 42L
Soon:



Answer:
<span>The fundamental frequency of the string:
</span>
21 Hz